File size: 6,062 Bytes
eda40d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# ------------------------------------------------------------------------------
# FreeDA
# ------------------------------------------------------------------------------
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat


class BLCModuleCompatibleBCHW(nn.Module):
    def forward_blc(self, x):
        raise NotImplementedError()

    def forward(self, x):
        is2d = x.ndim == 4
        if is2d:
            _, _, H, W = x.shape
            x = rearrange(x, "B C H W -> B (H W) C")

        x = self.forward_blc(x)

        if is2d:
            x = rearrange(x, "B (H W) C -> B C H W", H=H, W=W)

        return x


class FeatureEncoder(nn.Module):
    """Encoder + Feature extractor
    """
    def __init__(self, safe=True):
        super().__init__()
        self.safe = safe  # clone return features to protect it from after-modification
        self._features = []

    def hook(self, module, input, output):
        self._features.append(output)

    def clear_features(self):
        self._features.clear()

    def _encode(self, x):
        raise NotImplementedError()

    def forward(self, *args, ret_feats=False, **kwargs):
        self.clear_features()

        x = self._encode(*args, **kwargs)

        if ret_feats:
            if self.safe:
                features = [t.clone() for t in self._features]
                self.clear_features()
            else:
                features = self._features
            return x, features
        else:
            self.clear_features()
            return x


class Project2d(nn.Module):
    """2d projection by 1x1 conv

    Args:
        p: [C_in, C_out]
    """
    def __init__(self, p):
        # convert to 1x1 conv weight
        super().__init__()
        p = rearrange(p, "Cin Cout -> Cout Cin 1 1")
        self.p = nn.Parameter(p.detach().clone())

    def forward(self, x):
        return F.conv2d(x, self.p)  # 1x1 conv


def dispatcher(dispatch_fn):
    def decorated(key, *args):
        if callable(key):
            return key

        if key is None:
            key = "none"

        return dispatch_fn(key, *args)

    return decorated


@dispatcher
def activ_dispatch(activ):
    return {
        "none": nn.Identity,
        "relu": nn.ReLU,
        "lrelu": partial(nn.LeakyReLU, negative_slope=0.2),
        "gelu": nn.GELU,
    }[activ.lower()]


def get_norm_fn(norm, C):
    """2d normalization layers
    """
    if norm is None or norm == "none":
        return nn.Identity()

    return {
        "bn": nn.BatchNorm2d(C),
        "syncbn": nn.SyncBatchNorm(C),
        "ln": LayerNorm2d(C),
        "gn": nn.GroupNorm(32, C),
    }[norm]


class LayerNorm2d(nn.LayerNorm):
    def __init__(self, num_channels, eps=1e-5, affine=True):
        super().__init__(num_channels, eps=eps, elementwise_affine=affine)

    def forward(self, x):
        return F.layer_norm(
            x.permute(0, 2, 3, 1),
            self.normalized_shape,
            self.weight,
            self.bias,
            self.eps
        ).permute(0, 3, 1, 2)


class Gate(nn.Module):
    """Tanh gate"""
    def __init__(self, init=0.0):
        super().__init__()
        self.gate = nn.Parameter(torch.as_tensor(init))

    def forward(self, x):
        return torch.tanh(self.gate) * x


class ConvBlock(nn.Module):
    def __init__(
        self,
        C_in,
        C_out,
        kernel_size=3,
        stride=1,
        padding=1,
        norm="none",
        activ="relu",
        bias=True,
        upsample=False,
        downsample=False,
        pad_type="zeros",
        dropout=0.0,
        gate=False,
    ):
        super().__init__()
        if kernel_size == 1:
            assert padding == 0
        self.C_in = C_in
        self.C_out = C_out

        activ = activ_dispatch(activ)
        self.upsample = upsample
        self.downsample = downsample

        self.norm = get_norm_fn(norm, C_in)
        self.activ = activ()
        if dropout > 0.0:
            self.dropout = nn.Dropout2d(p=dropout)
        self.conv = nn.Conv2d(
            C_in, C_out, kernel_size, stride, padding,
            bias=bias, padding_mode=pad_type
        )

        self.gate = Gate() if gate else None

    def forward(self, x):
        # pre-act
        x = self.norm(x)
        x = self.activ(x)
        if self.upsample:
            x = F.interpolate(x, scale_factor=2)
        if hasattr(self, "dropout"):
            x = self.dropout(x)
        x = self.conv(x)
        if self.downsample:
            x = F.avg_pool2d(x, 2)

        if self.gate is not None:
            x = self.gate(x)

        return x


class ResConv(nn.Module):
    """Pre-activate residual block with single or double conv block"""

    def __init__(
        self,
        C_in,
        C_out,
        kernel_size=3,
        stride=1,
        padding=1,
        norm="none",
        activ="relu",
        upsample=False,
        pad_type="zeros",
        dropout=0.0,
        gate=True,  # if True, use zero-init gate
        double=False,
        # norm2 and activ2 are only used when double is True
        norm2=None,  # if given, apply it to second conv
        activ2=None  # if given, apply it to second conv
    ):
        super().__init__()

        self.C_in = C_in
        self.C_out = C_out
        self.upsample = upsample
        self.double = double
        self.conv = ConvBlock(
            C_in, C_out, kernel_size, stride, padding, norm, activ,
            pad_type=pad_type, dropout=dropout, gate=gate,
        )
        if double:
            norm2 = norm2 or norm
            activ2 = activ2 or activ
            self.conv2 = ConvBlock(
                C_out, C_out, kernel_size, stride, padding, norm2, activ2,
                pad_type=pad_type, dropout=dropout, gate=gate
            )

    def forward(self, x):
        if self.upsample:
            x = F.interpolate(x, scale_factor=2)
        x = x + self.conv(x)

        if self.double:
            x = x + self.conv2(x)

        return x