kylielee505 commited on
Commit
10dd0e6
·
verified ·
1 Parent(s): e3cfcc5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ ip-adapter-faceid.jpg filter=lfs diff=lfs merge=lfs -text
37
+ faceid_plusv2.jpg filter=lfs diff=lfs merge=lfs -text
38
+ sdxl_faceid.jpg filter=lfs diff=lfs merge=lfs -text
39
+ faceid_portrait_sd15.jpg filter=lfs diff=lfs merge=lfs -text
40
+ faceid-plus.jpg filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-to-image
4
+ - stable-diffusion
5
+
6
+ language:
7
+ - en
8
+ library_name: diffusers
9
+ ---
10
+
11
+ # IP-Adapter-FaceID Model Card
12
+
13
+
14
+ <div align="center">
15
+
16
+ [**Project Page**](https://ip-adapter.github.io) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2308.06721) **|** [**Code**](https://github.com/tencent-ailab/IP-Adapter)
17
+ </div>
18
+
19
+ ---
20
+
21
+
22
+
23
+ ## Introduction
24
+
25
+ An experimental version of IP-Adapter-FaceID: we use face ID embedding from a face recognition model instead of CLIP image embedding, additionally, we use LoRA to improve ID consistency. IP-Adapter-FaceID can generate various style images conditioned on a face with only text prompts.
26
+
27
+ ![results](./ip-adapter-faceid.jpg)
28
+
29
+
30
+ **Update 2023/12/27**:
31
+
32
+ IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)
33
+
34
+ <div align="center">
35
+
36
+ ![results](./faceid-plus.jpg)
37
+ </div>
38
+
39
+ **Update 2023/12/28**:
40
+
41
+ IP-Adapter-FaceID-PlusV2: face ID embedding (for face ID) + controllable CLIP image embedding (for face structure)
42
+
43
+ You can adjust the weight of the face structure to get different generation!
44
+
45
+ <div align="center">
46
+
47
+ ![results](./faceid_plusv2.jpg)
48
+ </div>
49
+
50
+ **Update 2024/01/04**:
51
+
52
+ IP-Adapter-FaceID-SDXL: An experimental SDXL version of IP-Adapter-FaceID
53
+
54
+ <div align="center">
55
+
56
+ ![results](./sdxl_faceid.jpg)
57
+ </div>
58
+
59
+ **Update 2024/01/17**:
60
+
61
+ IP-Adapter-FaceID-PlusV2-SDXL: An experimental SDXL version of IP-Adapter-FaceID-PlusV2
62
+
63
+
64
+ **Update 2024/01/19**:
65
+
66
+ IP-Adapter-FaceID-Portrait: same with IP-Adapter-FaceID but for portrait generation (no lora! no controlnet!). Specifically, it accepts multiple facial images to enhance similarity (the default is 5).
67
+
68
+ <div align="center">
69
+
70
+ ![results](./faceid_portrait_sd15.jpg)
71
+ </div>
72
+
73
+
74
+ ## Usage
75
+
76
+ ### IP-Adapter-FaceID
77
+
78
+ Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
79
+
80
+ ```python
81
+
82
+ import cv2
83
+ from insightface.app import FaceAnalysis
84
+ import torch
85
+
86
+ app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
87
+ app.prepare(ctx_id=0, det_size=(640, 640))
88
+
89
+ image = cv2.imread("person.jpg")
90
+ faces = app.get(image)
91
+
92
+ faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
93
+ ```
94
+
95
+ Then, you can generate images conditioned on the face embeddings:
96
+
97
+ ```python
98
+
99
+ import torch
100
+ from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
101
+ from PIL import Image
102
+
103
+ from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
104
+
105
+ base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
106
+ vae_model_path = "stabilityai/sd-vae-ft-mse"
107
+ ip_ckpt = "ip-adapter-faceid_sd15.bin"
108
+ device = "cuda"
109
+
110
+ noise_scheduler = DDIMScheduler(
111
+ num_train_timesteps=1000,
112
+ beta_start=0.00085,
113
+ beta_end=0.012,
114
+ beta_schedule="scaled_linear",
115
+ clip_sample=False,
116
+ set_alpha_to_one=False,
117
+ steps_offset=1,
118
+ )
119
+ vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
120
+ pipe = StableDiffusionPipeline.from_pretrained(
121
+ base_model_path,
122
+ torch_dtype=torch.float16,
123
+ scheduler=noise_scheduler,
124
+ vae=vae,
125
+ feature_extractor=None,
126
+ safety_checker=None
127
+ )
128
+
129
+ # load ip-adapter
130
+ ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
131
+
132
+ # generate image
133
+ prompt = "photo of a woman in red dress in a garden"
134
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
135
+
136
+ images = ip_model.generate(
137
+ prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
138
+ )
139
+
140
+ ```
141
+
142
+ you can also use a normal IP-Adapter and a normal LoRA to load model:
143
+
144
+ ```python
145
+ import torch
146
+ from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
147
+ from PIL import Image
148
+
149
+ from ip_adapter.ip_adapter_faceid_separate import IPAdapterFaceID
150
+
151
+ base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
152
+ vae_model_path = "stabilityai/sd-vae-ft-mse"
153
+ ip_ckpt = "ip-adapter-faceid_sd15.bin"
154
+ lora_ckpt = "ip-adapter-faceid_sd15_lora.safetensors"
155
+ device = "cuda"
156
+
157
+ noise_scheduler = DDIMScheduler(
158
+ num_train_timesteps=1000,
159
+ beta_start=0.00085,
160
+ beta_end=0.012,
161
+ beta_schedule="scaled_linear",
162
+ clip_sample=False,
163
+ set_alpha_to_one=False,
164
+ steps_offset=1,
165
+ )
166
+ vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
167
+ pipe = StableDiffusionPipeline.from_pretrained(
168
+ base_model_path,
169
+ torch_dtype=torch.float16,
170
+ scheduler=noise_scheduler,
171
+ vae=vae,
172
+ feature_extractor=None,
173
+ safety_checker=None
174
+ )
175
+
176
+ # load lora and fuse
177
+ pipe.load_lora_weights(lora_ckpt)
178
+ pipe.fuse_lora()
179
+
180
+ # load ip-adapter
181
+ ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
182
+
183
+ # generate image
184
+ prompt = "photo of a woman in red dress in a garden"
185
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
186
+
187
+ images = ip_model.generate(
188
+ prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
189
+ )
190
+
191
+
192
+ ```
193
+
194
+ ### IP-Adapter-FaceID-SDXL
195
+
196
+ Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
197
+
198
+ ```python
199
+
200
+ import cv2
201
+ from insightface.app import FaceAnalysis
202
+ import torch
203
+
204
+ app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
205
+ app.prepare(ctx_id=0, det_size=(640, 640))
206
+
207
+ image = cv2.imread("person.jpg")
208
+ faces = app.get(image)
209
+
210
+ faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
211
+ ```
212
+
213
+ Then, you can generate images conditioned on the face embeddings:
214
+
215
+ ```python
216
+
217
+ import torch
218
+ from diffusers import StableDiffusionXLPipeline, DDIMScheduler
219
+ from PIL import Image
220
+
221
+ from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDXL
222
+
223
+ base_model_path = "SG161222/RealVisXL_V3.0"
224
+ ip_ckpt = "ip-adapter-faceid_sdxl.bin"
225
+ device = "cuda"
226
+
227
+ noise_scheduler = DDIMScheduler(
228
+ num_train_timesteps=1000,
229
+ beta_start=0.00085,
230
+ beta_end=0.012,
231
+ beta_schedule="scaled_linear",
232
+ clip_sample=False,
233
+ set_alpha_to_one=False,
234
+ steps_offset=1,
235
+ )
236
+ pipe = StableDiffusionXLPipeline.from_pretrained(
237
+ base_model_path,
238
+ torch_dtype=torch.float16,
239
+ scheduler=noise_scheduler,
240
+ add_watermarker=False,
241
+ )
242
+
243
+ # load ip-adapter
244
+ ip_model = IPAdapterFaceIDXL(pipe, ip_ckpt, device)
245
+
246
+ # generate image
247
+ prompt = "A closeup shot of a beautiful Asian teenage girl in a white dress wearing small silver earrings in the garden, under the soft morning light"
248
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
249
+
250
+ images = ip_model.generate(
251
+ prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=2,
252
+ width=1024, height=1024,
253
+ num_inference_steps=30, guidance_scale=7.5, seed=2023
254
+ )
255
+
256
+ ```
257
+
258
+
259
+ ### IP-Adapter-FaceID-Plus
260
+
261
+ Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
262
+
263
+ ```python
264
+
265
+ import cv2
266
+ from insightface.app import FaceAnalysis
267
+ from insightface.utils import face_align
268
+ import torch
269
+
270
+ app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
271
+ app.prepare(ctx_id=0, det_size=(640, 640))
272
+
273
+ image = cv2.imread("person.jpg")
274
+ faces = app.get(image)
275
+
276
+ faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
277
+ face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
278
+ ```
279
+
280
+ Then, you can generate images conditioned on the face embeddings:
281
+
282
+ ```python
283
+
284
+ import torch
285
+ from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
286
+ from PIL import Image
287
+
288
+ from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
289
+
290
+ v2 = False
291
+ base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
292
+ vae_model_path = "stabilityai/sd-vae-ft-mse"
293
+ image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
294
+ ip_ckpt = "ip-adapter-faceid-plus_sd15.bin" if not v2 else "ip-adapter-faceid-plusv2_sd15.bin"
295
+ device = "cuda"
296
+
297
+ noise_scheduler = DDIMScheduler(
298
+ num_train_timesteps=1000,
299
+ beta_start=0.00085,
300
+ beta_end=0.012,
301
+ beta_schedule="scaled_linear",
302
+ clip_sample=False,
303
+ set_alpha_to_one=False,
304
+ steps_offset=1,
305
+ )
306
+ vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
307
+ pipe = StableDiffusionPipeline.from_pretrained(
308
+ base_model_path,
309
+ torch_dtype=torch.float16,
310
+ scheduler=noise_scheduler,
311
+ vae=vae,
312
+ feature_extractor=None,
313
+ safety_checker=None
314
+ )
315
+
316
+ # load ip-adapter
317
+ ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
318
+
319
+ # generate image
320
+ prompt = "photo of a woman in red dress in a garden"
321
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
322
+
323
+ images = ip_model.generate(
324
+ prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, shortcut=v2, s_scale=1.0,
325
+ num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
326
+ )
327
+
328
+ ```
329
+
330
+ ### IP-Adapter-FaceID-Portrait
331
+
332
+ ```python
333
+
334
+ import cv2
335
+ from insightface.app import FaceAnalysis
336
+ import torch
337
+
338
+ app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
339
+ app.prepare(ctx_id=0, det_size=(640, 640))
340
+
341
+
342
+ images = ["1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg"]
343
+
344
+ faceid_embeds = []
345
+ for image in images:
346
+ image = cv2.imread("person.jpg")
347
+ faces = app.get(image)
348
+ faceid_embeds.append(torch.from_numpy(faces[0].normed_embedding).unsqueeze(0).unsqueeze(0))
349
+ faceid_embeds = torch.cat(faceid_embeds, dim=1)
350
+ ```
351
+
352
+ ```python
353
+ import torch
354
+ from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
355
+ from PIL import Image
356
+
357
+ from ip_adapter.ip_adapter_faceid_separate import IPAdapterFaceID
358
+
359
+ base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
360
+ vae_model_path = "stabilityai/sd-vae-ft-mse"
361
+ ip_ckpt = "ip-adapter-faceid-portrait_sd15.bin"
362
+ device = "cuda"
363
+
364
+ noise_scheduler = DDIMScheduler(
365
+ num_train_timesteps=1000,
366
+ beta_start=0.00085,
367
+ beta_end=0.012,
368
+ beta_schedule="scaled_linear",
369
+ clip_sample=False,
370
+ set_alpha_to_one=False,
371
+ steps_offset=1,
372
+ )
373
+ vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
374
+ pipe = StableDiffusionPipeline.from_pretrained(
375
+ base_model_path,
376
+ torch_dtype=torch.float16,
377
+ scheduler=noise_scheduler,
378
+ vae=vae,
379
+ feature_extractor=None,
380
+ safety_checker=None
381
+ )
382
+
383
+
384
+ # load ip-adapter
385
+ ip_model = IPAdapterFaceID(pipe, ip_ckpt, device, num_tokens=16, n_cond=5)
386
+
387
+ # generate image
388
+ prompt = "photo of a woman in red dress in a garden"
389
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
390
+
391
+ images = ip_model.generate(
392
+ prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=512, num_inference_steps=30, seed=2023
393
+ )
394
+
395
+
396
+ ```
397
+
398
+
399
+
400
+ ## Limitations and Bias
401
+ - The models do not achieve perfect photorealism and ID consistency.
402
+ - The generalization of the models is limited due to limitations of the training data, base model and face recognition model.
403
+
404
+
405
+ ## Non-commercial use
406
+ **AS InsightFace pretrained models are available for non-commercial research purposes, IP-Adapter-FaceID models are released exclusively for research purposes and is not intended for commercial use.**
407
+
faceid-plus.jpg ADDED

Git LFS Details

  • SHA256: b366d77e8f0ba2ca905b57a90a20ac9a9ceff421aca8fce6de5d3cb019a4a34f
  • Pointer size: 131 Bytes
  • Size of remote file: 918 kB
faceid_plusv2.jpg ADDED

Git LFS Details

  • SHA256: 5d369c3e49defca663dc50b28b1bb621834d319500b28de6a8de6a6eb319a2de
  • Pointer size: 132 Bytes
  • Size of remote file: 3.44 MB
faceid_portrait_sd15.jpg ADDED

Git LFS Details

  • SHA256: 6bc4ecb5e0f46a3206ec20a01973b0651c419b964c5b076c7e2d7253eec9aa00
  • Pointer size: 132 Bytes
  • Size of remote file: 3.57 MB
ip-adapter-faceid-plus_sd15.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:252fb53e0d018489d9e7f9b9e2001a52ff700e491894011ada7cfb471e0fadf2
3
+ size 156558503
ip-adapter-faceid-plus_sd15_lora.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f00341d11e5e7b5aadf63cbdead09ef82eb28669156161cf1bfc2105d4ff1cd
3
+ size 51059544
ip-adapter-faceid-plusv2_sd15.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26d0d86a1d60d6cc811d3b8862178b461e1eeb651e6fe2b72ba17aa95411e313
3
+ size 156558509
ip-adapter-faceid-plusv2_sd15_lora.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8abff87a15a049f3e0186c2e82c1c8e77783baf2cfb63f34c412656052eb57b0
3
+ size 51059544
ip-adapter-faceid-plusv2_sdxl.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6945d82b543700cc3ccbb98d363b837e9c596281607857c74b713a876daf5fb
3
+ size 1487555181
ip-adapter-faceid-plusv2_sdxl_lora.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f24b4bb2dad6638a09c00f151cde84991baf374409385bcbab53c1871a30cb7b
3
+ size 371842896
ip-adapter-faceid-portrait-v11_sd15.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a48cb4f89ed18e02c6000f65aa9efec452e87eaed4a1bc9fcf4a460c8d0e3bc6
3
+ size 64586623
ip-adapter-faceid-portrait_sd15.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68570f3c14fe125b00d4abf416af33d8b13bb496f4e55af2eb5d0a6017ee99a4
3
+ size 64586611
ip-adapter-faceid-portrait_sdxl.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5631ce7824cdafd2db37c5e85b985730a95ff59c5b4fc80c2b79b0bee5711512
3
+ size 749822515
ip-adapter-faceid-portrait_sdxl_unnorm.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:220bb86e205393a3d0411631cb473caddbf35fd371be2905ca9008818170db55
3
+ size 1009523411
ip-adapter-faceid.jpg ADDED

Git LFS Details

  • SHA256: cd4aa6c124459cfe5a9307f298fcf7580fd6caca5ee82baa3b68ca3beb346847
  • Pointer size: 132 Bytes
  • Size of remote file: 4.7 MB
ip-adapter-faceid_sd15.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:201344e22e6f55849cf07ca7a6e53d8c3b001327c66cb9710d69fd5da48a8da7
3
+ size 96740574
ip-adapter-faceid_sd15_lora.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70699f0dbfadd47de1f81d263cf4c86bd4b7271d841304af9b340b3a7f38e86a
3
+ size 51059544
ip-adapter-faceid_sdxl.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f455fed24e207c878ec1e0466b34a969d37bab857c5faa4e8d259a0b4ff63d7e
3
+ size 1071149741
ip-adapter-faceid_sdxl_lora.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fcf93d6e8dc8dd18f5f9e51c8306f369486ed0aa0780ade9961308aff7f0d64
3
+ size 371842896
sdxl_faceid.jpg ADDED

Git LFS Details

  • SHA256: 598c4982ab85aa9b38fbb8cff218ad096ffc6bf6bf01cb192f86be9751c81eef
  • Pointer size: 132 Bytes
  • Size of remote file: 2.78 MB