nielsr HF Staff commited on
Commit
237a5ea
·
verified ·
1 Parent(s): 204af47

Enhance dataset card for MagicData340K with comprehensive details, usage, and citation

Browse files

This PR significantly enhances the dataset card for `MagicData340K`.

It includes:
- Added `task_categories` (`image-text-to-text`, `text-to-image`) and relevant `tags` to the metadata for better discoverability.
- A link to the project page: [https://wj-inf.github.io/MagicMirror-page/](https://wj-inf.github.io/MagicMirror-page/)
- An introductory description of the dataset and the MagicMirror framework, based on the paper abstract.
- An illustrative image from the GitHub repository.
- A clear "Sample Usage" section with a code snippet from the GitHub README for assessing T2I models.
- The BibTeX citation for the paper.

Files changed (1) hide show
  1. README.md +39 -9
README.md CHANGED
@@ -1,18 +1,48 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
4
 
5
- Paper:
6
- https://arxiv.org/abs/2509.10260
7
 
8
- MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation
9
 
 
10
 
11
- Dataset:
12
- https://huggingface.co/datasets/wj-inf/MagicData340k
 
13
 
14
- Model:
15
- https://huggingface.co/datasets/wj-inf/MagicAssessor-7B
16
 
17
- Benchmark:
18
- https://github.com/wj-inf/MagicMirror
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ task_categories:
4
+ - image-text-to-text
5
+ - text-to-image
6
+ tags:
7
+ - text-to-image
8
+ - evaluation
9
+ - artifacts
10
  ---
11
 
12
+ # MagicData340K: A Large-Scale Dataset for Fine-Grained Artifacts Assessment in Text-to-Image Generation
 
13
 
14
+ This repository hosts **MagicData340K**, a large-scale human-annotated dataset central to the [MagicMirror framework](https://wj-inf.github.io/MagicMirror-page/). The MagicMirror framework introduces a comprehensive approach for the systematic and fine-grained evaluation of physical artifacts (such as anatomical and structural flaws) in Text-to-Image (T2I) generation.
15
 
16
+ `MagicData340K` is the first human-annotated large-scale dataset, comprising 340,000 generated images, each with fine-grained artifact labels. These annotations are guided by a detailed taxonomy of generated image artifacts, making the dataset crucial for understanding and improving the perceptual quality of T2I models.
17
 
18
+ **Paper**: [MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation](https://arxiv.org/abs/2509.10260)
19
+ **Project Page**: [https://wj-inf.github.io/MagicMirror-page/](https://wj-inf.github.io/MagicMirror-page/)
20
+ **Code (MagicMirror Benchmark)**: [https://github.com/wj-inf/MagicMirror](https://github.com/wj-inf/MagicMirror)
21
 
22
+ <p align="center"><img src="https://github.com/wj-inf/MagicMirror/blob/main/assets/output_example.png?raw=true" width="95%"></p>
 
23
 
24
+ ## Related Hugging Face Assets
25
+
26
+ * **Dataset (Self-reference)**: [wj-inf/MagicData340k](https://huggingface.co/datasets/wj-inf/MagicData340k)
27
+ * **Model (MagicAssessor VLM)**: [wj-inf/MagicAssessor-7B](https://huggingface.co/datasets/wj-inf/MagicAssessor-7B)
28
+
29
+ ## Sample Usage
30
+
31
+ The MagicMirror framework, which utilizes this dataset, allows for the assessment of Text-to-Image (T2I) models. After setting up the environment as detailed in the [MagicMirror GitHub repository](https://github.com/wj-inf/MagicMirror), you can organize your image data (e.g., as `./output/sdxl/merged_result_sdxl.jsonl`) and run the assessment script:
32
+
33
+ ```bash
34
+ bash run.sh flux-schnell sdxl
35
+ ```
36
+
37
+ ## Citation
38
+
39
+ If you find MagicData340K or the MagicMirror framework useful for your research, please cite the paper:
40
+
41
+ ```bibtex
42
+ @article{wang2025magicmirror,
43
+ title = {MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation},
44
+ author = {Wang, Jia and Hu, Jie and Ma, Xiaoqi and Ma, Hanghang and Zeng, Yanbing and Wei, Xiaoming},
45
+ journal = {arXiv preprint arXiv:2509.10260},
46
+ year = {2025}
47
+ }
48
+ ```