MojtabaEshghie commited on
Commit
d7b1312
·
verified ·
1 Parent(s): a122339

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -56
README.md CHANGED
@@ -1,58 +1,125 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: hash
5
- dtype: string
6
- - name: failure_reason
7
- dtype: string
8
- - name: block_number
9
- dtype: int64
10
- - name: from_address
11
- dtype: string
12
- - name: to_address
13
- dtype: string
14
- - name: tx_input
15
- dtype: string
16
- - name: gas_used
17
- dtype: int64
18
- - name: gas_price
19
- dtype: int64
20
- - name: gas_limit
21
- dtype: int64
22
- - name: value
23
- dtype: int64
24
- - name: tx_index
25
- dtype: int64
26
- - name: failure_message
27
- dtype: string
28
- - name: failure_invariant
29
- dtype: string
30
- - name: tenderly_src
31
- dtype: bool
32
- - name: etherscan_src
33
- dtype: bool
34
- - name: failure_file
35
- dtype: string
36
- - name: failure_function
37
- dtype: string
38
- - name: failure_contract
39
- dtype: string
40
- - name: timestamp
41
- dtype: string
42
- splits:
43
- - name: evaluation
44
- num_bytes: 36121089
45
- num_examples: 20000
46
- - name: finetuning
47
- num_bytes: 177872231
48
- num_examples: 99999
49
- download_size: 56060290
50
- dataset_size: 213993320
51
- configs:
52
- - config_name: default
53
- data_files:
54
- - split: evaluation
55
- path: data/evaluation-*
56
- - split: finetuning
57
- path: data/finetuning-*
58
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pretty_name: "Dataset for the paper: ``RAVEN: Analyzing Ethereum’s Reverted Transactions via Semantic Clustering of Failure Invariants``"
3
+ license: "cc-by-4.0"
4
+ language:
5
+ - "en"
6
+ tags:
7
+ - smart-contracts
8
+ - ethereum
9
+ - blockchain
10
+ - transaction-failures
11
+ - invariants
12
+ task_categories:
13
+ - tabular-classification # Changed from anomaly-detection and classification
14
+ size_categories:
15
+ - 10K<n<100K
16
+ - 100K<n<1M
17
+ source_datasets:
18
+ - ethereum-blockchain-transactions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ---
20
+
21
+
22
+ # Dataset Card for **RAVEN: Analyzing Ethereum’s Reverted Transactions via Semantic Clustering of Failure Invariants**
23
+
24
+ ## Dataset Description
25
+ This dataset comprises two collections (splits) of failed transactions on the Ethereum blockchain, annotated with extracted *business‑logic invariants*. The dataset was created within the research project titled HighGuard: Cross‑Chain Business Logic Monitoring of Smart Contracts, by Mojtaba Eshghie.
26
+
27
+ - **Finetuning collection**: ~100,000 failed Ethereum transactions annotated with 1,932 unique invariants.
28
+ - **Evaluation collection**: ~20,000 sampled failed transactions annotated with 727 unique invariants, used for clustering and categorization evaluation.
29
+
30
+ Each record corresponds to a failed transaction, along with metadata such as transaction hash, block number, sender/receiver, gas used/limit, failure message, and extracted invariant condition that caused the failure.
31
+
32
+ ### Key features
33
+ - Focused on **business‐logic vulnerabilities**, not only low‑level errors (e.g., out‑of‑gas) but semantic violations captured via invariants.
34
+ - Two distinct collections (finetuning + evaluation) for training and benchmarking.
35
+ - Designed for anomaly‑detection and classification tasks in the smart‑contract security domain.
36
+
37
+ ### Recommended uses
38
+ - Training supervised or unsupervised models to detect business‑logic failures in smart contracts.
39
+ - Clustering sampled invariants to categorize common failure types.
40
+ - Benchmarking research on smart‐contract verification, transaction analysis, and runtime monitoring.
41
+
42
+ ### Out‑of‑Scope uses
43
+ - This dataset is **not** suitable for general cryptocurrency transaction modelling (e.g., normal transfers), since **only failed transactions** are included.
44
+ - It is **not** a comprehensive dataset of all Ethereum transactions — only those with business‐logic failure annotations.
45
+
46
+ ---
47
+
48
+ ## Dataset Structure
49
+ The dataset is provided as a `DatasetDict` with two splits/collections:
50
+
51
+ | Split | Description | Approx. Size |
52
+ |-----------------|-------------------------------------------------------|------------------|
53
+ | `finetuning` | 100 000 failed transactions annotated with 1 932 invariants | ~100k rows |
54
+ | `evaluation` | 20 000 failed transactions annotated with 727 invariants | ~20k rows |
55
+
56
+ Each record has the following columns:
57
+
58
+ - `tx_hash` (string): Transaction hash.
59
+ - `block_number` (int64): Block number in which the transaction was included.
60
+ - `from_address` (string): Sender Ethereum address.
61
+ - `to_address` (string): Receiver Ethereum address.
62
+ - `gas_limit` (int64): Gas limit specified for the transaction.
63
+ - `gas_used` (int64): Gas used by the transaction before failure.
64
+ - `failure_message` (string): The revert or failure message (if available).
65
+ - `invariant_condition` (string): A high‐level invariant representing the business‐logic violation.
66
+ - `invariant_id` (int64): An internal identifier for the extracted invariant cluster/category.
67
+ - `timestamp` (int64): Unix timestamp of the block (optional).
68
+
69
+ **File format:** The repository provides Parquet files for each split (`finetuning.parquet`, `evaluation.parquet`) and can be loaded via the `datasets` library as:
70
+
71
+ ```python
72
+ from datasets import load_dataset
73
+ ds = load_dataset("MojtabaEshghie/raven‑dataset", split="finetuning")
74
+ ````
75
+
76
+ ---
77
+
78
+ ## Dataset Creation
79
+
80
+ ### Curation Rationale
81
+
82
+ Business‐logic failures in smart contracts are harder to detect than low‐level exceptions (e.g., out‑of‑gas) but are critically important for security. The goal of this dataset is to provide a curated collection of failed transactions with extracted invariants to enable anomaly detection, clustering, and classification research in the smart‐contract domain.
83
+
84
+
85
+ ### Data Processing
86
+
87
+ * Filtering of failed transactions with revert/failure messages.
88
+ * Extraction of business‑logic invariants via the tool SoliDiffy and other analysis pipelines.
89
+ * Deduplication of similar invariant texts and clustering of invariants to create `invariant_id`.
90
+ * Serialization into Parquet format; conversion to Arrow format by the `datasets` library during upload.
91
+
92
+ ### Who/When/Where
93
+
94
+ * Curated by: Mojtaba Eshghie
95
+ * Affiliation: KTH Royal Institute of Technology, Umeå University.
96
+ * Date: Nov 2025
97
+
98
+ ---
99
+
100
+ ## Considerations for Using the Data
101
+
102
+ ### Limitations
103
+
104
+ * **Bias toward failures only**: The dataset contains only failed transactions, so models trained on it might not generalize to normal transactions.
105
+ * **Time cutoff**: Transactions are up to a certain block number.
106
+
107
+ ### Ethical and Privacy Considerations
108
+
109
+ * The data is sourced from a public blockchain (Ethereum), so transaction data is publicly available.
110
+ * Addresses are included (sender/receiver), which are pseudonymous but publicly traceable; users should be aware of potential linking to identities through external sources.
111
+ * Use responsibly: do not attempt to de‑anonymize addresses or misuse user data.
112
+
113
+ ### Recommendations
114
+
115
+ * If using for supervised classification, consider balancing via sampling or weighting due to potentially unbalanced invariant categories.
116
+ * For anomaly detection, consider using the `finetuning` split for training and `evaluation` for benchmarking.
117
+ * Always cite the dataset and the associated paper when using it in publications.
118
+
119
+ ---
120
+
121
+ ## Citation
122
+
123
+ ```bibtex
124
+ tbd
125
+ ```