--- license: cdla-permissive-2.0 task_categories: - text-classification - token-classification language: - en tags: - clinical - doctor-patient - dialog size_categories: - n<1K --- # Dataset Card: SIMORD (Simulated Medical Order Extraction Dataset) ## 1. Dataset Summary - **Name**: SIMORD - **Full name / acronym**: SIMulated ORDer Extraction - **Purpose / use case**: SIMORD is intended to support research in extracting structured medical orders (e.g. medication orders, lab orders) from doctor-patient consultation transcripts. It complements the SYNUR dataset by focusing on the downstream task of converting spoken clinical dialogue into structured orders. :contentReference[oaicite:0]{index=0} - **Version**: As released with the paper (2025) - **License / usage terms**: CDLA-2.0-permissive - **Contact / Maintainer**: jcorbeil@microsoft.com ## 4. Data Fields / Format - **Input fields**: - `transcript`: string, the doctor-patient consultation transcript (with disfluencies, interruptions, etc.) - `schema`: metadata of the target order schema (possible order types, attributes) - **Output / label fields**: - A JSON (or list) of **order objects** - Each order object includes at least: * `order_type` (e.g. “medication”, “lab”) * `description` (string) — the order text (e.g. “lasix 40 milligrams a day”) * `reason` (string) — the clinical reason or indication for the order * `provenance` (e.g. list of token indices or spans) — mapping back to parts of the transcript - **Annotation format constraints**: Outputs must conform to a parsable JSON format consistent with the schema defined in each example. ## Citation @article{corbeil2025empowering, title={Empowering Healthcare Practitioners with Language Models: Structuring Speech Transcripts in Two Real-World Clinical Applications}, author={Corbeil, Jean-Philippe and Abacha, Asma Ben and Michalopoulos, George and Swazinna, Phillip and Del-Agua, Miguel and Tremblay, Jerome and Daniel, Akila Jeeson and Bader, Cari and Cho, Yu-Cheng and Krishnan, Pooja and others}, journal={arXiv preprint arXiv:2507.05517}, year={2025} }