--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 6417909784 num_examples: 244436 - name: test num_bytes: 1221971111 num_examples: 46005 - name: validation num_bytes: 1465985310 num_examples: 54947 download_size: 974110589 dataset_size: 9105866205 --- # Dataset Card for "lmd_clean_8bars_32th_resolution" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) Available at [Portex](https://marketplace.portexai.com/creator-profile) ## 🎵 Lakh MIDI to MMM-Style Text Dataset This dataset converts the Lakh MIDI Dataset into a structured text format inspired by the [Multitrack Music Machine (MMM) paper](https://arxiv.org/abs/2008.01307). It includes **344,900 samples**, each representing an **8-bar symbolic music fragment**, tokenized into a language-model-friendly format. Each line in the dataset is a music fragment composed of tokens like: ```sql PIECE_START COMPOSER=JOHN_FARNHAM PERIOD= GENRE=TIME_SIG=4/4 TRACK_START INST=122 DENSITY=0 BAR_START TIME_DELTA=48 BAR_END ... ``` ### 🔍 Metadata - **Modality**: Text (converted from MIDI) - **Format**: One tokenized sequence per line (plain text) - **Size**: 344,900 rows - **Source**: Derived from the Lakh MIDI Dataset - **Structure**: Each row represents an 8-bar segment tokenized to match MMM syntax ### 🤖 Use Cases - Pretraining or finetuning symbolic music models - Sequence modeling research for music - Input for generative transformer models - Creative AI applications in music composition ### 🧠 Why this dataset? Symbolic music datasets in tokenized, language-model-ready formats are rare. This dataset bridges audio-derived symbolic data and the world of NLP modeling, saving hours of preprocessing and formatting work for researchers and ML developers.