Datasets:

ArXiv:
File size: 8,832 Bytes
5889057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from collections import defaultdict
from collections.abc import Iterable
import copy
from io import TextIOBase
from functools import lru_cache
import json
from typing import Any, Optional

import click
import datetime
import ftfy  # type: ignore
import requests
from tqdm import tqdm
import trafilatura  # type: ignore
from humanfriendly import format_number


# Download parameters
DOWNLOAD_TIMEOUT = 10  # Timeout in seconds of each HTTP request
DOWNLOAD_BUFFER_SIZE = 65_536  # Size of each HTTP request chunk in bytes
CODE_MAX_NUM_CHARS = 1_000_000  # Downloaded source code character threshold (applied after decoding to text)

# Extraction parameters
INCLUDE_COMMENTS = False  # Whether to include WP user comments in extracted text
INCLUDE_TABLES = True  # Whether to include markdown for HTML tables in extracted text
INCLUDE_LINKS = True  # Whether to include markdown for HTML links in extracted text
TEXT_MIN_NUM_WORDS = 100  # Extracted text word (whitespace-delimited token) threshold; None to disable
TEXT_MIN_NUM_CHARS = None  # Extracted text character threshold; None to disable


class DownloadTooLarge(Exception):
    pass


def download_url(url: str) -> tuple[Optional[str], dict[str, Any]]:
    """
    Fetch content at URL, returning downloaded source code and metadata.
    Metadata is represented as a dictionary containing Citation keys and values.
    """
    source_code: Optional[str] = None
    content_type: Optional[str] = None
    num_chars: Optional[int] = None
    error: Optional[str] = None
    download_date = datetime.datetime.now().astimezone().isoformat()

    try:
        with requests.get(url, stream=True, timeout=DOWNLOAD_TIMEOUT) as response:
            content_type = response.headers.get('Content-Type')
            try:
                content = ''
                for chunk in response.iter_content(chunk_size=DOWNLOAD_BUFFER_SIZE, decode_unicode=True):
                    content += chunk
                    if len(content) > CODE_MAX_NUM_CHARS:
                        raise DownloadTooLarge()
                source_code = content
                num_chars = len(content)
            except DownloadTooLarge:
                source_code = None
                error = 'Download is too large'
    except Exception as ex:
        source_code = None
        error = f'{type(ex).__name__}: {ex}'

    if not source_code:
        source_code = None
        error = 'Download is empty'

    metadata = dict(
        source_code_content_type=content_type,
        source_code_num_chars=num_chars,
        source_download_date=download_date,
        source_download_error=error,
    )
    return (source_code, metadata)


def count_words(text: str) -> int:
    return len(text.split())


def has_sufficient_word_count(source_text: str) -> bool:
    return not TEXT_MIN_NUM_WORDS or count_words(source_text) > TEXT_MIN_NUM_WORDS


def has_sufficient_char_count(source_text: str) -> bool:
    return not TEXT_MIN_NUM_CHARS or len(source_text) > TEXT_MIN_NUM_CHARS


def extract_source_text(source_code: str) -> dict[str, Any]:
    """
    Given a source's HTML, extract and return textual content and error information
    as a dictionary containing citation keys and values.
    """
    text: Optional[str] = None
    error: Optional[str] = None

    try:
        text = trafilatura.extract(
            source_code,
            include_comments=INCLUDE_COMMENTS,
            include_tables=INCLUDE_TABLES,
            include_links=INCLUDE_LINKS,
        )
        if text is not None:
            text = ftfy.fix_text(text)

    except Exception as ex:
        error = f'{type(ex).__name__}: {ex}'
        text = None

    else:
        if not text:
            error = 'Text is empty'
            text = None

        elif not has_sufficient_word_count(text):
            error = f'Text is too short ({format_number(count_words(text))} words)'
            text = None

        elif not has_sufficient_char_count(text):
            error = f'Text is too short ({format_number(len(text))} characters)'
            text = None

    return dict(
        source_text=text,
        source_extract_error=error,
    )


@lru_cache
def scrape_source_fields(url: str) -> dict[str, Any]:
    """
    Download source code at URL and extract text from the downloaded source code,
    returning a dictionary of fields to add to the corresponding citation.
    This abstraction is a little awkward, but it facilitates caching.
    """
    download_fields: dict[str, Any] = {}
    extraction_fields: dict[str, Any] = {}

    if url:
        (source_code, download_fields) = download_url(url)
        if source_code:
            extraction_fields = extract_source_text(source_code)

    return download_fields | extraction_fields


def scrape_source(citation: dict[str, Any]) -> dict[str, Any]:
    """
    Scrape sources for citation, storing scraped content in citation *in-place.*
    """
    if citation['url']:
        citation['dehydrated_citation'] = copy.deepcopy(citation)
        citation.update(scrape_source_fields(citation['url']))

    return citation


def update_citations_in_excerpts_with_citations(
    excerpts_with_citations: list[dict[str, Any]],
    new_citations: Iterable[dict[str, Any]],
) -> list[dict[str, Any]]:
    """
    Replace citations in `excerpts_with_citations` with the corresponding citations from `new_citations`,
    EXCEPT for the `char_index` field (leaving it as-is).
    Citations are aligned/matched by their content field.
    If a citation content string appears multiple times in `new_citations`, matching citations in
    `excerpts_with_citations` will be replaced with the final match in `new_citations`.
    `excerpts_with_citations` is modified *in-place,* and the updated list is returned.
    """
    ewc_citation_indices_by_key: dict[str, set[tuple[int, int]]] = defaultdict(set)
    for (i, ewc) in enumerate(excerpts_with_citations):
        for (j, citation) in enumerate(ewc['citations']):
            key = citation['content']
            ewc_citation_indices_by_key[key].add((i, j))

    for new_citation in new_citations:
        key = new_citation['content']
        for (i, j) in ewc_citation_indices_by_key[key]:
            excerpts_with_citations[i]['citations'][j] |= {
                k: v
                for (k, v) in new_citation.items()
                if k != 'char_index'
            }

    return excerpts_with_citations  # was modified in-place


def scrape_article_sources(article: dict[str, Any]) -> dict[str, Any]:
    """
    Scrape sources for all web citations in article, storing scraped content in article citation
    objects *in-place.*  Return modified article for convenience.
    """
    all_citations = []
    for element in article['elements']:
        if element['type'] == 'paragraph':
            for sentence in element['sentences']:
                for citation in sentence['citations']:
                    scrape_source(citation)  # modifies in-place
                    all_citations.append(citation)
        elif element['type'] == 'heading':
            for citation in element['citations']:
                scrape_source(citation)  # modifies in-place
                all_citations.append(citation)

    # modifies in-place
    update_citations_in_excerpts_with_citations(article['excerpts_with_citations'], all_citations)

    return article


@click.command(context_settings={'show_default': True})
@click.argument('input_file', type=click.File())
@click.argument('output_file', type=click.File(mode='w'))
@click.option('--stream', '-s', is_flag=True,
              help='Read one article at a time, rehydrating it and writing the output article before reading the next'
                   ' article.  The default behavior is to read all articles into memory before processing them.')
def main(input_file: TextIOBase, output_file: TextIOBase, stream: bool) -> None:
    """
    Scrape sources for all MegaWika 2 articles in JSON-lines (one JSON-encoded article per line) file INPUT_FILE,
    updating each web citation with source-scraping content and metadata and writing the articles with source content
    to JSON-lines file OUTPUT_FILE.

    Each web citation will be updated with `source_text` *and* source-scraping metadata fields; the original
    (dehydrated, metadata-only) web citation will be stored under the new citation field `dehydrated_citation`.
    """
    articles: Iterable[dict[str, Any]] = (json.loads(line) for line in input_file)
    if not stream:
        click.echo('Reading all articles into memory')
        articles = list(articles)

    for article in tqdm(articles, desc='Rehydrating', unit='article'):
        scrape_article_sources(article)
        output_file.write(json.dumps(article) + '\n')

    click.echo('Done')


if __name__ == '__main__':
    main()