Dataset Viewer
Auto-converted to Parquet Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
image_path: list<item: string>
depth_path: list<item: string>
normal_path: list<item: string>
vs
image_path: list<item: string>
depth_path: list<item: string>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              image_path: list<item: string>
              depth_path: list<item: string>
              normal_path: list<item: string>
              vs
              image_path: list<item: string>
              depth_path: list<item: string>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

DA2: Depth Anything in Any Direction

Page Paper GitHub HuggingFace Demo

DA2 predicts dense, scale-invariant distance from a single 360° panorama in an end-to-end manner, with remarkable geometric fidelity and strong zero-shot generalization.

teaser

⬇️ Download

  1. Download the datasets (please see here for the environment setup):
cd [YOUR_DATA_DIR]
huggingface-cli login
hf download --repo-type dataset haodongli/DA-2 --local-dir [YOUR_DATA_DIR]
  1. Merge parts into one *.tar.gz file:

    DATASET_NAME in [hypersim_pano, vkitti_pano, mvs_synth_pano, unreal4k_pano, 3d-ken-burns_pano, dynamic_replica_v2_pano]

cat [DATASET_NAME].tar.gz [DATASET_NAME]/part_*
  1. Check the MD5:
md5sum -c [DATASET_NAME]_checksum.md5
  1. If correct, then we can unzip it:
tar -zxvf [DATASET_NAME].tar.gz
  1. The data samples will be exported in [DATASET_NAME]/.

🎮 Usage

  1. The dietance values from the pixel to the 360° camera is stored in depth.png. I also provided depth_vis.png just for visualization.
  2. Please refer the code below to load the depth values from depth.png:
depth = cv2.imread('path/to/depth.png', cv2.IMREAD_UNCHANGED)
depth = depth.astype(np.float32)
depth = depth[:,:,0]
depth = depth * SCALE
depth = torch.from_numpy(depth)
  1. Please see the below table for the SCALE of different curated dataset:
    Curated dataset Scale
    Hypersim 40.0 / 65535.0
    VKITTI, MVS-Synth, 3D-Ken-Burns 1.0 / 256.0
    UnrealStereo4K 80.0 / 65535.0
    DynamicReplica 20.0 / 65535.0
  2. The valid masks of the depth maps can be obtained via:
valid_mask = torch.logical_and(
    (depth > 1e-5), (depth < 80.0)
).bool()

🎓 Citation

If you find these datasets useful, please consider citing 🌹:

@article{li2025depth,
  title={DA $^{2}$: Depth Anything in Any Direction},
  author={Li, Haodong and Zheng, Wangguangdong and He, Jing and Liu, Yuhao and Lin, Xin and Yang, Xin and Chen, Ying-Cong and Guo, Chunchao},
  journal={arXiv preprint arXiv:2509.26618},
  year={2025}
}

@inproceedings{roberts2021hypersim,
  title={Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding},
  author={Roberts, Mike and Ramapuram, Jason and Ranjan, Anurag and Kumar, Atulit and Bautista, Miguel Angel and Paczan, Nathan and Webb, Russ and Susskind, Joshua M},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={10912--10922},
  year={2021}
}

@article{cabon2020virtual,
  title={Virtual kitti 2},
  author={Cabon, Yohann and Murray, Naila and Humenberger, Martin},
  journal={arXiv preprint arXiv:2001.10773},
  year={2020}
}

@inproceedings{huang2018deepmvs,
  title={Deepmvs: Learning multi-view stereopsis},
  author={Huang, Po-Han and Matzen, Kevin and Kopf, Johannes and Ahuja, Narendra and Huang, Jia-Bin},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2821--2830},
  year={2018}
}

@inproceedings{tosi2021smd,
  title={Smd-nets: Stereo mixture density networks},
  author={Tosi, Fabio and Liao, Yiyi and Schmitt, Carolin and Geiger, Andreas},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={8942--8952},
  year={2021}
}

@article{niklaus20193d,
  title={3d ken burns effect from a single image},
  author={Niklaus, Simon and Mai, Long and Yang, Jimei and Liu, Feng},
  journal={ACM Transactions on Graphics (ToG)},
  volume={38},
  number={6},
  pages={1--15},
  year={2019},
  publisher={ACM New York, NY, USA}
}

@inproceedings{karaev2023dynamicstereo,
  title={Dynamicstereo: Consistent dynamic depth from stereo videos},
  author={Karaev, Nikita and Rocco, Ignacio and Graham, Benjamin and Neverova, Natalia and Vedaldi, Andrea and Rupprecht, Christian},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13229--13239},
  year={2023}
}
Downloads last month
565

Spaces using haodongli/DA-2 2