Datasets:
Tasks:
Token Classification
Sub-tasks:
word-sense-disambiguation
Languages:
Polish
Size:
1M<n<10M
License:
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import itertools | |
| import json | |
| from typing import Sequence | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| @InProceedings{10.1007/978-3-031-08754-7_70, | |
| author="Janz, Arkadiusz | |
| and Dziob, Agnieszka | |
| and Oleksy, Marcin | |
| and Baran, Joanna", | |
| editor="Groen, Derek | |
| and de Mulatier, Cl{\'e}lia | |
| and Paszynski, Maciej | |
| and Krzhizhanovskaya, Valeria V. | |
| and Dongarra, Jack J. | |
| and Sloot, Peter M. A.", | |
| title="A Unified Sense Inventory for Word Sense Disambiguation in Polish", | |
| booktitle="Computational Science -- ICCS 2022", | |
| year="2022", | |
| publisher="Springer International Publishing", | |
| address="Cham", | |
| pages="682--689", | |
| isbn="978-3-031-08754-7" | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Polish WSD training data manually annotated by experts according to plWordNet-4.2. | |
| """ | |
| _LICENSE = "cc-by-4.0" | |
| _BASE_URL = "https://huggingface.co/datasets/clarin-knext/wsd_polish_datasets/resolve/main/data/" | |
| _CORPUS_NAMES = [ | |
| "sherlock", | |
| "skladnica", | |
| "wikiglex", | |
| "emoglex", | |
| "walenty", | |
| "kpwr", | |
| "kpwr-100", | |
| ] | |
| _DATA_TYPES = [ | |
| "sentence", | |
| "text", | |
| ] | |
| _URLS = { | |
| "text": {corpus: f"{_BASE_URL}{corpus}_text.jsonl" for corpus in _CORPUS_NAMES}, | |
| "sentence": { | |
| corpus: f"{_BASE_URL}{corpus}_sentences.jsonl" for corpus in _CORPUS_NAMES | |
| }, | |
| } | |
| class WsdPolishBuilderConfig(datasets.BuilderConfig): | |
| def __init__( | |
| self, | |
| data_urls: Sequence[str], | |
| corpus: str, | |
| data_type: str, | |
| **kwargs, | |
| ): | |
| super(WsdPolishBuilderConfig, self).__init__( | |
| name=f"{corpus}_{data_type}", | |
| version=datasets.Version("1.0.0"), | |
| **kwargs, | |
| ) | |
| self.data_type = data_type | |
| self.corpus = corpus | |
| self.data_urls = data_urls | |
| if self.data_type not in _DATA_TYPES: | |
| raise ValueError( | |
| f"Corpus type {self.data_type} is not supported. Enter one of: {_DATA_TYPES}" | |
| ) | |
| if self.corpus not in (*_CORPUS_NAMES, "all"): | |
| raise ValueError( | |
| f"Corpus name `{self.corpus}` is not available. Enter one of: {(*_CORPUS_NAMES, 'all')}" | |
| ) | |
| class WsdPolishDataset(datasets.GeneratorBasedBuilder): | |
| """Polish WSD training data""" | |
| BUILDER_CONFIGS = [ | |
| WsdPolishBuilderConfig( | |
| corpus=corpus_name, | |
| data_type=data_type, | |
| data_urls=[_URLS[data_type][corpus_name]], | |
| description=f"Data part covering `{corpus_name}` corpora in `{data_type}` segmentation.", | |
| ) | |
| for corpus_name, data_type in itertools.product(_CORPUS_NAMES, _DATA_TYPES) | |
| ] | |
| BUILDER_CONFIGS.extend( | |
| [ | |
| WsdPolishBuilderConfig( | |
| corpus="all", | |
| data_type=data_type, | |
| data_urls=list(_URLS[data_type].values()), | |
| description=f"Data part covering `all` corpora in `{data_type}` segmentation.", | |
| ) | |
| for data_type in _DATA_TYPES | |
| ] | |
| ) | |
| DEFAULT_CONFIG_NAME = "all_text" | |
| def _info(self) -> datasets.DatasetInfo: | |
| text_features = { | |
| "text": datasets.Value("string"), | |
| "tokens": datasets.features.Sequence( | |
| dict( | |
| { | |
| "position": datasets.features.Sequence( | |
| length=2, | |
| feature=datasets.Value("int32"), | |
| ), | |
| "orth": datasets.Value("string"), | |
| "lemma": datasets.Value("string"), | |
| "pos": datasets.Value("string"), | |
| } | |
| ), | |
| ), | |
| "phrases": datasets.features.Sequence( | |
| dict( | |
| { | |
| "indices": datasets.features.Sequence( | |
| feature=datasets.Value("int32") | |
| ), | |
| "head": datasets.Value("int32"), | |
| "lemma": datasets.Value("string"), | |
| } | |
| ), | |
| ), | |
| "wsd": datasets.features.Sequence( | |
| dict( | |
| { | |
| "index": datasets.Value("int32"), | |
| "plWN_syn_id": datasets.Value("string"), | |
| "plWN_lex_id": datasets.Value("string"), | |
| "PWN_syn_id": datasets.Value("string"), | |
| "bn_syn_id": datasets.Value("string"), | |
| "mapping_relation": datasets.Value("string") | |
| } | |
| ), | |
| ), | |
| } | |
| if self.config.data_type == "sentence": | |
| features = datasets.Features( | |
| { | |
| "sentences": datasets.features.Sequence(text_features), | |
| } | |
| ) | |
| else: | |
| features = datasets.Features(text_features) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| filepaths = dl_manager.download_and_extract(self.config.data_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepaths": filepaths, | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepaths: Sequence[str]): | |
| key_iter = 0 | |
| for filepath in filepaths: | |
| with open(filepath, encoding="utf-8") as f: | |
| for data in (json.loads(line) for line in f): | |
| if self.config.data_type == "sentence": | |
| yield key_iter, { | |
| "sentences": [ | |
| self._process_example(sent) | |
| for sent in data["sentences"] | |
| ] | |
| } | |
| else: | |
| data.pop("context_file") | |
| yield key_iter, self._process_example(data) | |
| key_iter += 1 | |
| def _process_example(data: dict) -> dict: | |
| return { | |
| "text": data["text"], | |
| "tokens": [ | |
| { | |
| "position": tok["position"], | |
| "orth": tok["orth"], | |
| "lemma": tok["lemma"], | |
| "pos":tok["pos"], | |
| } | |
| for tok in data["tokens"] | |
| ], | |
| "wsd": [ | |
| { | |
| "index": tok["index"], | |
| "plWN_syn_id": tok["plWN_syn_id"], | |
| "plWN_lex_id": tok["plWN_lex_id"], | |
| "PWN_syn_id": tok["PWN_syn_id"], | |
| "bn_syn_id": tok["bn_syn_id"], | |
| "mapping_relation": tok["mapping_relation"], | |
| } | |
| for tok in data["wsd"] | |
| ], | |
| "phrases": [ | |
| { | |
| "indices": tok["indices"], | |
| "head": tok["head"], | |
| "lemma": tok["lemma"], | |
| } | |
| for tok in data["phrases"] | |
| ], | |
| } | |