Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Polish
Size:
10K - 100K
License:
Initial dataset commit.
Browse files- README.md +24 -0
- data/test.iob +0 -0
- data/train.iob +0 -0
- data/valid.iob +0 -0
- kpwr_and_cen.py +163 -0
README.md
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
annotations_creators:
|
| 3 |
+
- expert-generated
|
| 4 |
+
language_creators:
|
| 5 |
+
- found
|
| 6 |
+
language:
|
| 7 |
+
- pl
|
| 8 |
+
license:
|
| 9 |
+
- cc-by-3.0
|
| 10 |
+
multilinguality:
|
| 11 |
+
- monolingual
|
| 12 |
+
pretty_name: 'KPWr 1.27 & CEN'
|
| 13 |
+
size_categories:
|
| 14 |
+
- 18K
|
| 15 |
+
- 10K<n<100K
|
| 16 |
+
source_datasets:
|
| 17 |
+
- original
|
| 18 |
+
task_categories:
|
| 19 |
+
- token-classification
|
| 20 |
+
task_ids:
|
| 21 |
+
- named-entity-recognition
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# KPWr & CEN
|
data/test.iob
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/train.iob
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/valid.iob
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
kpwr_and_cen.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
"""KPWR version 1.27 & CEN merged dataset."""
|
| 3 |
+
|
| 4 |
+
import csv
|
| 5 |
+
import datasets
|
| 6 |
+
|
| 7 |
+
_DESCRIPTION = "KPWR version 1.27 & CEN merged dataset."
|
| 8 |
+
|
| 9 |
+
_URLS = {
|
| 10 |
+
"train": "https://huggingface.co/datasets/clarin-knext/kpwr/resolve/main/data/train.iob",
|
| 11 |
+
"valid": "https://huggingface.co/datasets/clarin-knext/kpwr/resolve/main/data/valid.iob",
|
| 12 |
+
"test": "https://huggingface.co/datasets/clarin-knext/kpwr/resolve/main/data/test.iob",
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
_HOMEPAGE = "https://clarin-pl.eu/dspace/"
|
| 16 |
+
|
| 17 |
+
_N82_TAGS = [
|
| 18 |
+
'nam_adj',
|
| 19 |
+
'nam_adj_city',
|
| 20 |
+
'nam_adj_country',
|
| 21 |
+
'nam_adj_person',
|
| 22 |
+
'nam_eve',
|
| 23 |
+
'nam_eve_human',
|
| 24 |
+
'nam_eve_human_cultural',
|
| 25 |
+
'nam_eve_human_holiday',
|
| 26 |
+
'nam_eve_human_sport',
|
| 27 |
+
'nam_fac_bridge',
|
| 28 |
+
'nam_fac_goe',
|
| 29 |
+
'nam_fac_goe_stop',
|
| 30 |
+
'nam_fac_park',
|
| 31 |
+
'nam_fac_road',
|
| 32 |
+
'nam_fac_square',
|
| 33 |
+
'nam_fac_system',
|
| 34 |
+
'nam_liv_animal',
|
| 35 |
+
'nam_liv_character',
|
| 36 |
+
'nam_liv_god',
|
| 37 |
+
'nam_liv_habitant',
|
| 38 |
+
'nam_liv_person',
|
| 39 |
+
'nam_loc',
|
| 40 |
+
'nam_loc_astronomical',
|
| 41 |
+
'nam_loc_country_region',
|
| 42 |
+
'nam_loc_gpe_admin1',
|
| 43 |
+
'nam_loc_gpe_admin2',
|
| 44 |
+
'nam_loc_gpe_admin3',
|
| 45 |
+
'nam_loc_gpe_city',
|
| 46 |
+
'nam_loc_gpe_conurbation',
|
| 47 |
+
'nam_loc_gpe_country',
|
| 48 |
+
'nam_loc_gpe_district',
|
| 49 |
+
'nam_loc_gpe_subdivision',
|
| 50 |
+
'nam_loc_historical_region',
|
| 51 |
+
'nam_loc_hydronym',
|
| 52 |
+
'nam_loc_hydronym_lake',
|
| 53 |
+
'nam_loc_hydronym_ocean',
|
| 54 |
+
'nam_loc_hydronym_river',
|
| 55 |
+
'nam_loc_hydronym_sea',
|
| 56 |
+
'nam_loc_land',
|
| 57 |
+
'nam_loc_land_continent',
|
| 58 |
+
'nam_loc_land_island',
|
| 59 |
+
'nam_loc_land_mountain',
|
| 60 |
+
'nam_loc_land_peak',
|
| 61 |
+
'nam_loc_land_region',
|
| 62 |
+
'nam_num_house',
|
| 63 |
+
'nam_num_phone',
|
| 64 |
+
'nam_org_company',
|
| 65 |
+
'nam_org_group',
|
| 66 |
+
'nam_org_group_band',
|
| 67 |
+
'nam_org_group_team',
|
| 68 |
+
'nam_org_institution',
|
| 69 |
+
'nam_org_nation',
|
| 70 |
+
'nam_org_organization',
|
| 71 |
+
'nam_org_organization_sub',
|
| 72 |
+
'nam_org_political_party',
|
| 73 |
+
'nam_oth',
|
| 74 |
+
'nam_oth_currency',
|
| 75 |
+
'nam_oth_data_format',
|
| 76 |
+
'nam_oth_license',
|
| 77 |
+
'nam_oth_position',
|
| 78 |
+
'nam_oth_tech',
|
| 79 |
+
'nam_oth_www',
|
| 80 |
+
'nam_pro',
|
| 81 |
+
'nam_pro_award',
|
| 82 |
+
'nam_pro_brand',
|
| 83 |
+
'nam_pro_media',
|
| 84 |
+
'nam_pro_media_periodic',
|
| 85 |
+
'nam_pro_media_radio',
|
| 86 |
+
'nam_pro_media_tv',
|
| 87 |
+
'nam_pro_media_web',
|
| 88 |
+
'nam_pro_model_car',
|
| 89 |
+
'nam_pro_software',
|
| 90 |
+
'nam_pro_software_game',
|
| 91 |
+
'nam_pro_title',
|
| 92 |
+
'nam_pro_title_album',
|
| 93 |
+
'nam_pro_title_article',
|
| 94 |
+
'nam_pro_title_book',
|
| 95 |
+
'nam_pro_title_document',
|
| 96 |
+
'nam_pro_title_song',
|
| 97 |
+
'nam_pro_title_treaty',
|
| 98 |
+
'nam_pro_title_tv',
|
| 99 |
+
'nam_pro_vehicle'
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
_NER_IOB_TAGS = ['O']
|
| 103 |
+
|
| 104 |
+
for tag in _N82_TAGS:
|
| 105 |
+
_NER_IOB_TAGS.extend([f'B-{tag}', f'I-{tag}'])
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class KpwrDataset(datasets.GeneratorBasedBuilder):
|
| 109 |
+
|
| 110 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 111 |
+
return datasets.DatasetInfo(
|
| 112 |
+
description=_DESCRIPTION,
|
| 113 |
+
features=datasets.Features(
|
| 114 |
+
{
|
| 115 |
+
"tokens": datasets.Sequence(datasets.Value('string')),
|
| 116 |
+
"lemmas": datasets.Sequence(datasets.Value('string')),
|
| 117 |
+
"mstags": datasets.Sequence(datasets.Value('string')),
|
| 118 |
+
"ner": datasets.Sequence(datasets.features.ClassLabel(names=_NER_IOB_TAGS))
|
| 119 |
+
}
|
| 120 |
+
),
|
| 121 |
+
homepage=_HOMEPAGE
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 125 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
| 126 |
+
return [
|
| 127 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}),
|
| 128 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'filepath': downloaded_files['valid']}),
|
| 129 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files['test']})
|
| 130 |
+
]
|
| 131 |
+
|
| 132 |
+
def _generate_examples(self, filepath: str):
|
| 133 |
+
with open(filepath, 'r', encoding='utf-8') as fin:
|
| 134 |
+
reader = csv.reader(fin, delimiter='\t', quoting=csv.QUOTE_NONE)
|
| 135 |
+
|
| 136 |
+
tokens = []
|
| 137 |
+
lemmas = []
|
| 138 |
+
mstags = []
|
| 139 |
+
ner = []
|
| 140 |
+
gid = 0
|
| 141 |
+
|
| 142 |
+
for line in reader:
|
| 143 |
+
if not line:
|
| 144 |
+
yield gid, {
|
| 145 |
+
"tokens": tokens,
|
| 146 |
+
"lemmas": lemmas,
|
| 147 |
+
"mstags": mstags,
|
| 148 |
+
"ner": ner
|
| 149 |
+
}
|
| 150 |
+
gid += 1
|
| 151 |
+
tokens = []
|
| 152 |
+
lemmas = []
|
| 153 |
+
mstags = []
|
| 154 |
+
ner = []
|
| 155 |
+
|
| 156 |
+
elif len(line) == 1: # ignore --DOCSTART lines
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
else:
|
| 160 |
+
tokens.append(line[0])
|
| 161 |
+
lemmas.append(line[1])
|
| 162 |
+
mstags.append(line[2])
|
| 163 |
+
ner.append(line[3])
|