Yunncheng commited on
Commit
6d2760e
Β·
verified Β·
1 Parent(s): e3d69a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -3
README.md CHANGED
@@ -1,3 +1,101 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - ai-generated images
5
+ - ai-generated image detection
6
+ - test-set
7
+ - deepfake
8
+ - forgery-detection
9
+ - computer-vision
10
+ task_categories:
11
+ - image-classification
12
+ language:
13
+ - en
14
+ dataset_info:
15
+ features:
16
+ - name: file_name
17
+ dtype: string
18
+ description: "Relative path to the image under root."
19
+ - name: image
20
+ dtype: image
21
+ - name: is_real
22
+ dtype: string
23
+ - name: content_type
24
+ dtype: string
25
+ data_files:
26
+ - split: test
27
+ path: test.parquet
28
+ ---
29
+
30
+ # 🌊 Mirage-Test Dataset
31
+
32
+ [![Paper](https://img.shields.io/badge/arXiv-2511.08423-B31B1B.svg)](https://arxiv.org/abs/2511.08423)
33
+ [![GitHub](https://img.shields.io/badge/GitHub-Code-181717.svg?logo=github)](https://github.com/yunncheng/OmniAID)
34
+ [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/Yunncheng/OmniAID/tree/main)
35
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Yunncheng/OmniAID-Demo)
36
+ [![License](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
37
+
38
+ **Mirage-Test** is a modern **test-only dataset** for benchmarking AI-generated image detection models.
39
+ It contains **real** (`0_real`) and **fake** (`1_fake`) images across five distinct content domains, designed to evaluate generalization across diverse visual semantics.
40
+ The fake images are generated using state-of-the-art generative models specifically optimized for perceptual realism and visual fidelity.
41
+
42
+ > πŸ“Œ **This dataset is for evaluation only. No training split is provided.**
43
+
44
+ ## πŸ“ Dataset Structure
45
+
46
+ Images are organized hierarchically by content type and authenticity:
47
+
48
+ ```bash
49
+ Mirage-Test/
50
+ β”œβ”€β”€ Animal/
51
+ β”‚ β”œβ”€β”€ 0_real/ # Real animal photos
52
+ β”‚ └── 1_fake/ # AI-generated animal images
53
+ β”œβ”€β”€ Anime/
54
+ β”‚ └── 1_fake/ # AI-generated anime-style images
55
+ β”œβ”€β”€ Human/
56
+ β”‚ β”œβ”€β”€ 0_real/ # Real human photos
57
+ β”‚ └── 1_fake/ # AI-generated human images
58
+ β”œβ”€β”€ Object/
59
+ β”‚ β”œβ”€β”€ 0_real/ # Real object photos
60
+ β”‚ └── 1_fake/ # AI-generated object images
61
+ β”œβ”€β”€ Scene/
62
+ β”‚ β”œβ”€β”€ 0_real/ # Real landscape/architecture photos
63
+ β”‚ └── 1_fake/ # AI-generated scenes images
64
+ β”œβ”€β”€ metadata.parquet
65
+ └── README.md
66
+ ```
67
+
68
+ - **Total samples**: 49000
69
+
70
+ ## πŸ“₯ Downloading Raw Files
71
+
72
+ To download the dataset with original folder structure:
73
+
74
+ ```python
75
+ from huggingface_hub import snapshot_download
76
+
77
+ snapshot_download(
78
+ repo_id="Yunncheng/Mirage-Test",
79
+ repo_type="dataset",
80
+ local_dir="./Mirage-Test"
81
+ )
82
+ ```
83
+
84
+ ## πŸ™ Acknowledgements
85
+
86
+ - Generated using state-of-the-art diffusion models (e.g., [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux))
87
+ - Real images sourced from publicly available, royalty-free image platforms (e.g., [Pexels](https://www.pexels.com/))
88
+
89
+
90
+ ## πŸ“ Citation
91
+
92
+ If you find this work useful for your research, please cite our paper:
93
+
94
+ ```bibtex
95
+ @article{guo2025omniaid,
96
+ title={OmniAID: Decoupling Semantic and Artifacts for Universal AI-Generated Image Detection in the Wild},
97
+ author={Guo, Yuncheng and Ye, Junyan and Zhang, Chenjue and Kang, Hengrui and Fu, Haohuan and He, Conghui and Li, Weijia},
98
+ journal={arXiv preprint arXiv:2511.08423},
99
+ year={2025}
100
+ }
101
+ ```