# coding=utf-8 import argparse import json import random from ltp import LTP from tqdm import tqdm def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--input", type=str, required=True) parser.add_argument("--output", type=str, required=True) parser.add_argument("--ltp_model", type=str, required=True) parser.add_argument("--basic_hanzi", type=str, default="confusion/basic_hanzi_2500.txt") parser.add_argument("--sound_confusion", type=str, default="confusion/sound_confusion.txt") parser.add_argument("--shape_confusion", type=str, default="confusion/shape_confusion.txt") parser.add_argument("--same_ratio", type=float, default=0.1) parser.add_argument("--repeat_ratio", type=float, default=0.15) parser.add_argument("--delete_ratio", type=float, default=0.15) parser.add_argument("--sound_ratio", type=float, default=0.5) parser.add_argument("--shape_ratio", type=float, default=0.1) parser.add_argument("--whitelist", type=str, default="一二三四五六七八九十") parser.add_argument("--seed", type=int, default=42) args = parser.parse_args() return args def isChinese(word): for ch in word: cp = ord(ch) if cp >= 0x4E00 and cp <= 0x9FA5: continue return False return True def load_hanzi(path): hanzi = set() with open(path, mode="r", encoding="utf-8") as handle: for line in handle: line = line.strip() assert len(line) == 1 hanzi.update(line) return hanzi def load_confusion_set(path, hanzi): confusion_set = {} with open(path, mode="r", encoding="utf-8") as handle: for line in handle: line = line.strip().split() if len(line) < 2: continue key, val = line[0], [] for c in line[1]: if c in hanzi and c not in val and c != key: val.append(c) if val: confusion_set[key] = val return confusion_set def do_mask(sent, args): # 分词和词性标注 cws, pos = args.ltp.pipeline(sent, tasks=["cws", "pos"], return_dict=False) n = len(cws) i = random.choice(range(n)) word = cws[i] if not isChinese(word): i = random.choice(range(n)) word = cws[i] if not isChinese(word): return sent p = random.random() p1 = args.same_ratio p2 = p1 + args.repeat_ratio p3 = p2 + args.delete_ratio p4 = p3 + args.sound_ratio p5 = p4 + args.shape_ratio assert abs(p5 - 1) < 0.001 if p < p1: return sent if p < p2: # 字词冗余 cws[i] += word return ''.join(cws) if pos[i] in ['nh', 'ns']: # 不修改人名地名 return sent chars = list(word) k = random.choice(range(len(word))) c = chars[k] if c in args.whitelist: return sent if p < p3: if len(word) < 2: return sent chars[k] = '' cws[i] = ''.join(chars) return ''.join(cws) if p < p4: if c in args.sound_set: chars[k] = random.choice(args.sound_set[c]) else: if c in args.shape_set: chars[k] = random.choice(args.shape_set[c]) cws[i] = ''.join(chars) return ''.join(cws) if __name__ == "__main__": args = parse_args() random.seed(args.seed) # 常用汉字集合 hanzi = load_hanzi(args.basic_hanzi) # 混淆集 args.sound_set = load_confusion_set(args.sound_confusion, hanzi) args.shape_set = load_confusion_set(args.shape_confusion, hanzi) args.hanzi = list(hanzi) # ltp中文分词模型 args.ltp = LTP(args.ltp_model) output = open(args.output, mode="w") with open(args.input, mode="r", encoding="utf-8") as handle: for line in tqdm(handle): sent = line.strip() if len(sent) < 4: continue source = do_mask(sent, args) label = int(source != sent) output.write( json.dumps({"source": source, "target": sent, "label": label}, ensure_ascii=False) ) output.write("\n")