File size: 6,537 Bytes
1c93f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f276cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285aca6
8f276cb
 
 
 
 
285aca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360ecc
285aca6
 
 
 
 
 
 
 
1360ecc
285aca6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
dataset_info:
  features:
  - name: uuid
    dtype: string
  - name: source
    dtype: string
  - name: image
    dtype: image
  - name: orig_id
    dtype: int64
  - name: lat
    dtype: float64
  - name: lon
    dtype: float64
  - name: quality
    dtype: string
  - name: weather
    dtype: string
  - name: lighting_condition
    dtype: string
  - name: platform
    dtype: string
  - name: highway
    dtype: string
  - name: road_width
    dtype: string
  - name: lanes
    dtype: string
  - name: urban_term
    dtype: string
  - name: Safe
    dtype: float64
  - name: Lively
    dtype: float64
  - name: Beautiful
    dtype: float64
  - name: Boring
    dtype: float64
  - name: Depressing
    dtype: float64
  - name: Wealthy
    dtype: float64
  - name: Road
    dtype: float64
  - name: Building
    dtype: float64
  - name: Vegetation
    dtype: float64
  - name: green_view_index
    dtype: float64
  - name: sky_view_index
    dtype: float64
  - name: Car
    dtype: float64
  splits:
  - name: train
    num_bytes: 3077277438
    num_examples: 9653
  download_size: 3879591501
  dataset_size: 3077277438
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: mit
task_categories:
- image-classification
- visual-question-answering
language:
- en
tags:
- urban-perception
- urban-planning
- street-view
- computer-vision
- mapillary
- green-view-index
- sky-view-index
- street-view-assessment
- infrastructure-assessment
pretty_name: >-
  Urban Perception Dataset: Street-View Image Analysis Dataset for
  Infrastructure Assessment 
size_categories:
- 1K<n<10K
---

# Urban Streetscape Dataset for Vision Language Models

A curated subset of 10,000 street view images with 25 essential features optimized for training vision language models on urban environment analysis tasks.

## Dataset Description

This dataset contains street view imagery paired with comprehensive annotations covering infrastructure characteristics, visual perception metrics, environmental context, and semantic segmentation data.

This comprehensive dataset represents a carefully curated subset of 10,000 high-quality street-view images derived from the NUS Global Streetscapes repository by the Urban Analytics Lab at the National University of Singapore - one of the world's largest and most comprehensive urban perception datasets containing over 10 million street-view images from 688 cities across 210 countries and territories.

This dataset combines the global scale and methodological rigor of the NUS research with focused curation for practical computer vision and urban planning applications. Each sample includes rich multi-modal annotations spanning visual features, human perception ratings, infrastructure metadata, and environmental context.

## Features

### Core Identifiers

- **uuid**: Unique identifier for each image
- **source**: Data source platform (Mapillary/KartaView)
- **image**: Streetview image
- **orig_id**: Original platform-specific identifier
- **lat/lon**: Geographic coordinates

### Environmental Context

- **quality**: Image quality assessment (good, slightly poor, poor)
- **weather**: Weather conditions (clear, cloudy, rainy, snowy)
- **lighting_condition**: Lighting context (day, night, dusk/dawn)
- **platform**: Surface type (driving surface, walking surface, cycling surface)

### Infrastructure Characteristics

- **highway**: Road classification (residential, primary, secondary, tertiary, etc.)
- **road_width**: Road width measurements in meters
- **lanes**: Number of traffic lanes
- **urban_term**: Urban density classification (urban centre, suburban, peri-urban)

### Perception Scores

Human-rated perceptual qualities on a continuous scale:

- **Safe**: Safety perception rating
- **Lively**: Liveliness perception rating
- **Beautiful**: Aesthetic appeal rating
- **Boring**: Monotony perception rating
- **Depressing**: Negative affect rating
- **Wealthy**: Socioeconomic perception rating

### Visual Composition

Pixel-level semantic segmentation percentages and computed indices:

- **Road**: Road surface coverage percentage
- **Building**: Built structure coverage percentage
- **Vegetation**: Natural vegetation coverage percentage
- **green_view_index**: Quantitative measure of visible greenery (0-1)
- **sky_view_index**: Quantitative measure of visible sky (0-1)
- **Car**: Vehicle presence percentage

### Data Quality

- **Feature completeness**: 95%+ coverage for visual indices and perception scores
- **Geographic diversity**: Global representation across 170+ countries
- **Infrastructure coverage**: 85%+ coverage for road classification and lane data
- **Road width data**: 60%+ coverage with precise measurements

## Applications

The dataset supports training and evaluation of models for:

- **Multi-modal Learning**: Train models to understand relationships between visual features and human perception
- **Urban Scene Understanding**: Develop AI systems for automated urban environment classification
- **Cross-cultural Generalization**: Build models that work across diverse global urban contexts
- **Semantic Segmentation**: Advanced training data for urban scene parsing and object detection
- **Quantitative urban environment assessment**
- **Infrastructure analysis and measurement**
- **Visual appeal and safety evaluation**
- **Urban planning and policy research**
- **Multi-modal understanding of streetscapes**

## Sampling Methodology

The dataset employs a three-tier sampling strategy:

- **Tier 1: High completeness samples (50%)**: Prioritizes samples with comprehensive feature coverage
- **Tier 2: Visual diversity samples (30%)**: Ensures representation across different urban environment types
- **Tier 3: Geographic coverage (20%)**: Maintains global representativeness

## References

This dataset is curated from the NUS Global Streetscapes repository, developed by the Urban Analytics Lab at the National University of Singapore. For additional information and resources, refer to the following:

- **Hugging Face Dataset**: [NUS-UAL/global-streetscapes](https://huggingface.co/datasets/NUS-UAL/global-streetscapes)
- **GitHub Repository**: [ualsg/global-streetscapes](https://github.com/ualsg/global-streetscapes)
- **Project Documentation**: [Urban Analytics Lab - Global Streetscapes](https://ual.sg/project/global-streetscapes/)

## Authors

Created by **Sadhana Shashidhar**  
[Dept. of Computer Science and Engineering, PES University, Bangalore]  
Contact: [[email protected]]