--- annotations_creators: [] language: - en multilinguality: [] pretty_name: Target-QA size_categories: - n<1K source_datasets: - depmap - biomedgraphica tags: - bioinformatics - graph-ml - precision-medicine task_categories: - question-answering - text-generation task_ids: - extractive-qa - text2text-generation paperswithcode_id: null configs: - config_name: train data_files: train_samples_detailed.csv - config_name: test data_files: test_samples_detailed.csv --- # 🎯 Target-QA: The First QA Dataset Benchmarking Target Priorization Based on DepMap
--- ## 📑 Dataset Summary **Target-QA** is derived from the **DepMap** multi-omics and CRISPR screening cohorts, harmonized via **[BioMedGraphica](https://huggingface.co/datasets/FuhaiLiAiLab/BioMedGraphica)**. It enables **multi-modal reasoning** by combining numeric evidence, topological knowledge and language context for **CRISPR target prioritization**. This dataset supports the training and benchmarking of **graph-augmented large language models (LLMs)**, such as **[GALAX](https://huggingface.co/FuhaiLiAiLab/GALAX)**, for reasoning across structured and unstructured biomedical information. - 🔗 Source code: [GitHub](https://github.com/FuhaiLiAiLab/GALAX) - 🤗 Model parameters: [Hugging Face](https://huggingface.co/FuhaiLiAiLab/GALAX) --- ## 🛠️ Preprocessing Details  - **Starting cohort**: 985 DepMap cell lines - 649 annotated (cancerous) - 336 non-annotated or non-cancerous - **Target-QA subset**: 363 overlapping with CRISPR gene effect data - **Omics modalities integrated into 834,809 entities**: - Promoter: 86,238 - Gene: 86,238 - Transcript: 412,039 - Protein: 121,419 - **Knowledge graph integration**: - Protein–protein interactions: 17,151,453 edges - Disease–target associations: 27,087,971 edges --- ## 📂 Data Splits - **Pretraining set**: 336 samples - Train: 269 - Test: 67 - **Target-QA set**: 363 samples - Train: 300 - Test: 63 **Test distribution includes:** LUAD (7), BRCA (6), COAD/READ (5), PAAD (4), GBM (3), SARC (3), OV (3), SKCM (3), ESCA (3), SCLC (3), HNSC (2), LUSC (2), STAD (2), etc. --- ## 🧪 Supported Tasks & Benchmarks - **Graph-Augmented QA**: Identify CRISPR targets from omics + KG context - **Knowledge Graph Reasoning**: Subgraph extraction & signaling network prioritization - **Multi-Omic Target Prioritization**: Integrated of epigenomic, genomic, transcriptomic and proteomic --- ## 📊 Dataset Structure ### Example JSON ```json { "cell_line_name": "GAMG", "cell_line_id": "ACH-000098", "disease": "glioblastoma", "disease_bmgc_id": "BMGC_DS00965", "sample_dti_index": 123, "input": { "top_k_gene": { "hgnc_symbols": ["EGFR", "CDKN2A"], "protein_bmgc_ids": ["BMGC_PR01234"], "protein_llmname_ids": ["ENSP00000354587"] }, "top_k_transcript": {...}, "top_k_protein": {...}, "knowledge_graph": { "disease_protein": {...}, "ppi_neighbors": {...}, "protein_relationships": ["BRCA1 → TP53"] } }, "ground_truth_answer": { "hgnc_symbols": ["TP53", "EGFR"], "protein_bmgc_ids": ["BMGC_PR00987", "BMGC_PR04567"], "protein_llmname_ids": ["ENSP00000439978"] } } ``` ## 📝 Prompt Design ### Initial Prompt (`P_init_n`) **Inputs:** - Top-10 ranked genes, transcripts, proteins - Disease-associated proteins from KG - Known PPI and disease–protein relationships **Output:** - 100 vulnerability genes `r_init[n,1...100]` ### Refined Prompt (`P_final_n`) **Inputs:** - Same as above - Subsignaling gene regulatory network (from graph generator) **Output:** - Refined 100 vulnerability genes `r_hat[n,1...100]` --- ## ⚖️ Licensing This dataset is based on **DepMap** data and is subject to the **DepMap Terms of Use**: - Free for **research purposes only** - **Commercial use prohibited** without explicit Broad Institute license - ML models may be trained for **internal research use** or shared for **non-profit research** - Attribution to **Broad Institute / DepMap** is required 🔗 [DepMap Terms of Use](https://depmap.org/portal) --- ## 📚 Citation If you use **Target-QA** or **GALAX**, please cite: ```bibtex @misc{zhang2025galax, title={GALAX: Graph-Augmented Language Model for Explainable Reinforcement-Guided Subgraph Reasoning in Precision Medicine}, author={Heming Zhang and Di Huang and Wenyu Li and Michael Province and Yixin Chen and Philip Payne and Fuhai Li}, year={2025}, eprint={2509.20935}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2509.20935} }