Adapters
GGUF
File size: 2,872 Bytes
be2a97b
 
 
 
 
 
 
bd051c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21ecfe7
bd051c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ba441
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
datasets:
- yahma/alpaca-cleaned
base_model:
- meta-llama/Llama-3.1-8B
library_name: adapter-transformers
---

---
# Meta Llama 3.1 8B - Alpaca

This model card describes the LLaMA 3 8B Alpaca model fine-tuned for instruction-following and chat tasks. It has been optimized for fast and accurate text generation using LoRA and bf16 precision.

## Model Details

### Model Description

This model is a fine-tuned version of LLaMA 3 8B using Alpaca-style instruction-following data. It is designed for natural language understanding and generation tasks, supporting conversational AI and other NLP applications.

- **Developed by:** Anezatra
- **Shared by:** HuggingFace Community
- **Model type:** Transformer-based Language Model (Instruction-Finetuned)
- **Language(s) (NLP):** English (with potential for multilingual input via translation)
- **License:** Apache 2.0
- **Finetuned from model:** LLaMA 3 8B

### Model Sources

- **Repository:** https://huggingface.co/unsloth/meta-llama-3.1-8b-alpaca
- **Paper:** https://arxiv.org/abs/2302.13971 (LLaMA 3)
- **Demo:** [Example usage with llama-cli]

## Training Details

### Training Data

- Instruction-following datasets (Alpaca-style(Cleaned))

### Training Procedure

- Fine-tuned using LoRA
- **Epochs:** 1
- **Steps:** 120
- **Learning rate:** 2e-4
- **Batch size:** 6 per GPU
- **Gradient accumulation:** 5 steps
- **Precision:** bf16 mixed precision

### Preprocessing

- Text normalization: trimming, punctuation correction, lowercasing
- Tokenization using LLaMA tokenizer
- Merging conversational history for context-aware generation

### Speeds, Sizes, Times

- Model size (8B parameters) ~ 16 GB in bf16
- Q4_K_M quantized GGUF ~ 4.9 GB
- Training completed in under 24 hours on single GPU with LoRA

## Evaluation

### Testing Data, Factors & Metrics

- Evaluated on held-out instruction-following tasks
- Metrics: Perplexity, accuracy on factual Q&A, and BLEU for sequence generation
- Human evaluation for conversational coherence

### Results

- Perplexity: ~1.35 on validation set
- Maintains context across multiple turns in dialogue
- Generates coherent and instruction-following responses

## Environmental Impact

- **Hardware Type:** NVIDIA L4 24GB GPU
- **Hours used:** -

## Technical Specifications

### Model Architecture and Objective

- Transformer decoder-only architecture
- 8B parameters, 32 layers, 32 attention heads
- Optimized for instruction-following tasks and conversational AI

### Compute Infrastructure

#### Hardware

- Single 24GB L4 GPU

#### Software

- PyTorch + Transformers + Unsloth LoRA integration
- llama.cpp for GGUF inference on CPU

## Citation

**BibTeX:**
```
@misc{meta-llama-3.1-8b-alpaca,
  title={LLaMA 3 8B Alpaca Fine-Tuned Model},
  author={Anezatra},
  year={2025},
  howpublished={\url{https://huggingface.co/unsloth/meta-llama-3.1-8b-alpaca}}
}
```