File size: 3,886 Bytes
016cfcc
 
5300873
 
092595f
5300873
f2850af
5300873
 
 
 
 
 
 
016cfcc
 
5300873
016cfcc
e268f38
016cfcc
71119a3
896987b
e268f38
 
 
 
 
 
 
016cfcc
6d4950b
 
 
 
5300873
016cfcc
41cab68
 
 
 
e268f38
016cfcc
83e3ea3
 
 
016cfcc
5300873
 
016cfcc
5300873
016cfcc
5300873
016cfcc
5300873
016cfcc
5300873
016cfcc
5300873
016cfcc
92f1835
6d4950b
 
016cfcc
519d231
016cfcc
5300873
016cfcc
5300873
016cfcc
5300873
 
016cfcc
5300873
016cfcc
6d4950b
016cfcc
5300873
016cfcc
5300873
016cfcc
5300873
016cfcc
5300873
 
 
016cfcc
e9c8c9f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
tags:
- gene-ontology
- proteomics
datasets:
- andrewdalpino/AmiGO
metrics:
- precision
- recall
- f1
base_model:
- facebook/esm2_t12_35M_UR50D
pipeline_tag: text-classification
---

# ESM2 Protein Function Caller

An Evolutionary-scale Model (ESM) for protein function prediction from amino acid sequences using the Gene Ontology (GO). Based on the ESM2 Transformer architecture, pre-trained on [UniRef50](https://www.uniprot.org/help/uniref), and fine-tuned on the [AmiGO](https://huggingface.co/datasets/andrewdalpino/AmiGO) dataset, this model predicts the GO subgraph for a particular protein sequence - giving you insight into the molecular function, biological process, and location of the activity inside the cell.

**Note**: This version only models the `molecular function` subgraph of the gene ontology.

## What are GO terms?

> "The Gene Ontology (GO) is a concept hierarchy that describes the biological function of genes and gene products at different levels of abstraction (Ashburner et al., 2000). It is a good model to describe the multi-faceted nature of protein function."

> "GO is a directed acyclic graph. The nodes in this graph are functional descriptors (terms or classes) connected by relational ties between them (is_a, part_of, etc.). For example, terms 'protein binding activity' and 'binding activity' are related by an is_a relationship; however, the edge in the graph is often reversed to point from binding towards protein binding. This graph contains three subgraphs (subontologies): Molecular Function (MF), Biological Process (BP), and Cellular Component (CC), defined by their root nodes. Biologically, each subgraph represent a different aspect of the protein's function: what it does on a molecular level (MF), which biological processes it participates in (BP) and where in the cell it is located (CC)."

From [CAFA 5 Protein Function Prediction](https://www.kaggle.com/competitions/cafa-5-protein-function-prediction/data)

## Code Repository

https://github.com/andrewdalpino/esm2-function-classifier

## Model Specs

- **Vocabulary Size**: 33
- **Embedding Dimensions**: 480
- **Attention Heads**: 20
- **Encoder Layers**: 12
- **Context Length**: 1026

## Basic Example

For a basic demonstration we can rank the GO terms for a particular sequence. For a more advanced example see the [predict-subgraph.py](https://github.com/andrewdalpino/esm2-function-classifier/blob/master/predict-subgraph.py) source file.

```python
import torch

from transformers import EsmTokenizer, EsmForSequenceClassification

model_name = "andrewdalpino/ESM2-35M-Protein-Molecular-Function"

tokenizer = EsmTokenizer.from_pretrained(model_name)

model = EsmForSequenceClassification.from_pretrained(model_name)

model.eval()

sequence = "MCNAWYISVDFEKNREDKSKCIHTRRNSGPKLLEHVMYEVLRDWYCLEGENVYMM"

top_k = 10

out = tokenizer(sequence)

input_ids = out["input_ids"]

input_ids = torch.tensor(input_ids, dtype=torch.int64).unsqueeze(0)

with torch.no_grad():
    outputs = model.forward(input_ids)

    probabilities = torch.sigmoid(outputs.logits.squeeze(0))

    probabilities, indices = torch.topk(probabilities, top_k)

probabilities = probabilities.tolist()

terms = [model.config.id2label[index] for index in indices.tolist()]

print(f"Top {args.top_k} GO Terms:")

for term, probability in zip(terms, probabilities):
    print(f"{probability:.4f}: {term}")
```

## References:

>- A. Rives, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences, 2021.
>- Z. Lin, et al. Evolutionary-scale prediction of atomic level protein structure with a language model, 2022.
>- G. A. Merino, et al. Hierarchical deep learning for predicting GO annotations by integrating protein knowledge, 2022.
>- M. Ashburner, et al. Gene Ontology: tool for the unification of biology, 2000.