🧠 ZeroXClem/Qwen3-1.7B-TardigradePro

Tardigrade

A resilient and highly distilled 1.7B parameter model crafted through precision mergekit stock fusion, combining powerful reasoning, advanced code generation, and symbolic logic.


πŸ”§ Merge Configuration

name: ZeroXClem/Qwen3-1.7B-TardigradePro
base_model: Qwen/Qwen3-1.7B-Base
dtype: bfloat16
merge_method: model_stock
models:
  - model: prithivMLmods/Capricornus-MoT-1.7B-Supreme1
  - model: ertghiu256/qwen3-1.7b-mixture-of-thought
  - model: XformAI-india/qwen-1.7b-coder
  - model: prithivMLmods/Regulus-Qwen3-R1-Llama-Distill-1.7B
  - model: prithivMLmods/Demeter-LongCoT-Qwen3-1.7B
tokenizer_source: Qwen/Qwen3-1.7B-Base

🌟 Key Strengths

  • 🧬 Multi-Expert Fusion Integrates chain-of-thought, symbolic reasoning, long-context STEM tasks, and multilingual coding into a unified agent.

  • πŸ’‘ Lightweight Distilled Intelligence Powered by distilled traces and Mixture-of-Thoughts tuning, delivering performance far beyond its 1.7B parameter size.

  • πŸ“Š Domain-Specific Superpowers Excels in:

    • Math & science step-by-step reasoning
    • Python/JS/Bash code generation
    • Chain-of-thought problem decomposition
    • Structured output: LaTeX, JSON, Markdown, YAML
  • 🧠 LongCoT Capabilities Handles deep reasoning flows with clarityβ€”ideal for algorithm design, math derivations, and structured academic workflows.

  • ⚑ Efficiency at Scale Deployable on 8GB VRAM or CPU edge devices with GGUF and quantized variants.


πŸ”Ž Model Lineage

Model Contribution
prithivMLmods/Capricornus-MoT-1.7B-Supreme1 MoT fine-tuning on code/math/science
ertghiu256/qwen3-1.7b-mixture-of-thought Multiexpert symbolic logic
XformAI-india/qwen-1.7b-coder Code specialization (Python, JS, Bash)
prithivMLmods/Regulus-Qwen3-R1-Llama-Distill-1.7B DeepSeek70B reasoning distilled
prithivMLmods/Demeter-LongCoT-Qwen3-1.7B Long chain-of-thought symbolic tuning
Qwen/Qwen3-1.7B-Base Foundational pretraining and multilingual context

πŸ§ͺ Quickstart

from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("ZeroXClem/Qwen3-1.7B-TardigradePro", device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("ZeroXClem/Qwen3-1.7B-TardigradePro")

prompt = "Explain with code how to solve a quadratic equation and show symbolic math."

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

πŸ’» Applications

  • Educational assistants and STEM tutors
  • Coding copilots and REPL automation
  • Symbolic math & logic agents
  • Scientific document assistants
  • Edge-deployable AI reasoning models

🚫 Limitations

  • Context limited to ~8K - 30K Tokens
  • Specialized for structured logicβ€”less effective in freeform chat
  • Doesn’t hallucinate creativelyβ€”focuses on truth, clarity, and structure

πŸ”— Related Resources


πŸ”– License

Apache 2.0 Portions inherit wen licensesβ€”see each base model for additional usage terms.


πŸ’Œ Credits

ZeroXClem Model Made with πŸ’– Special Thanks to prithivMLmods, ertghiu256, XformAI, and Qwen Merging, distillation, prompt tuning and symbolic alignment by love and fire.

β€œBuilt like a tardigradeβ€”small, mighty, and immortal.”


Downloads last month
18
Safetensors
Model size
2B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for ZeroXClem/Qwen3-1.7B-TardigradePro