Improve model card: refine pipeline tag and add GitHub link (#1)
Browse files- Improve model card: refine pipeline tag and add GitHub link (f32843464db5926eda6fb7047e582665d8d73948)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,63 +1,50 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: cc-by-4.0
|
|
|
|
| 3 |
tags:
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
library_name: timm
|
| 13 |
-
datasets:
|
| 14 |
-
- Elsafty
|
| 15 |
-
- Chula
|
| 16 |
-
- DSE
|
| 17 |
-
pipeline_tag: feature-extraction
|
| 18 |
model-index:
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
value: 83.8
|
| 47 |
-
- task:
|
| 48 |
-
type: image-classification
|
| 49 |
-
name: RBC Shape Classification
|
| 50 |
-
dataset:
|
| 51 |
-
name: DSE
|
| 52 |
-
type: Classification
|
| 53 |
-
metrics:
|
| 54 |
-
- type: Weighted F1
|
| 55 |
-
value: 85.9
|
| 56 |
-
- type: Balanced Accuracy
|
| 57 |
-
value: 57.9
|
| 58 |
-
- type: Accuracy
|
| 59 |
-
value: 86.0
|
| 60 |
---
|
|
|
|
| 61 |
# RedDino-base
|
| 62 |
|
| 63 |
**RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
|
|
@@ -68,17 +55,18 @@ Unlike general-purpose models pretrained on natural images, RedDino incorporates
|
|
| 68 |
|
| 69 |
> 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
|
| 70 |
> 🏥 University of Cagliari & Helmholtz Munich
|
| 71 |
-
> 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
|
|
|
|
| 72 |
|
| 73 |
---
|
| 74 |
|
| 75 |
## Model Details
|
| 76 |
|
| 77 |
-
-
|
| 78 |
-
-
|
| 79 |
-
-
|
| 80 |
-
-
|
| 81 |
-
-
|
| 82 |
|
| 83 |
## Example Usage
|
| 84 |
|
|
|
|
| 1 |
---
|
| 2 |
+
datasets:
|
| 3 |
+
- Elsafty
|
| 4 |
+
- Chula
|
| 5 |
+
- DSE
|
| 6 |
+
library_name: timm
|
| 7 |
license: cc-by-4.0
|
| 8 |
+
pipeline_tag: image-feature-extraction
|
| 9 |
tags:
|
| 10 |
+
- red-blood-cells
|
| 11 |
+
- hematology
|
| 12 |
+
- medical-imaging
|
| 13 |
+
- vision-transformer
|
| 14 |
+
- dino
|
| 15 |
+
- dinov2
|
| 16 |
+
- feature-extraction
|
| 17 |
+
- foundation-model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
model-index:
|
| 19 |
+
- name: RedDino-base
|
| 20 |
+
results:
|
| 21 |
+
- task:
|
| 22 |
+
type: image-classification
|
| 23 |
+
name: RBC Shape Classification
|
| 24 |
+
dataset:
|
| 25 |
+
name: Elsafty
|
| 26 |
+
type: Classification
|
| 27 |
+
metrics:
|
| 28 |
+
- type: Weighted F1
|
| 29 |
+
value: 88.1
|
| 30 |
+
- type: Balanced Accuracy
|
| 31 |
+
value: 89.3
|
| 32 |
+
- type: Accuracy
|
| 33 |
+
value: 88.2
|
| 34 |
+
- type: Weighted F1
|
| 35 |
+
value: 83.8
|
| 36 |
+
- type: Balanced Accuracy
|
| 37 |
+
value: 78.6
|
| 38 |
+
- type: Accuracy
|
| 39 |
+
value: 83.8
|
| 40 |
+
- type: Weighted F1
|
| 41 |
+
value: 85.9
|
| 42 |
+
- type: Balanced Accuracy
|
| 43 |
+
value: 57.9
|
| 44 |
+
- type: Accuracy
|
| 45 |
+
value: 86.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
---
|
| 47 |
+
|
| 48 |
# RedDino-base
|
| 49 |
|
| 50 |
**RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis.
|
|
|
|
| 55 |
|
| 56 |
> 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552)
|
| 57 |
> 🏥 University of Cagliari & Helmholtz Munich
|
| 58 |
+
> 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180)
|
| 59 |
+
> 💻 Code: [https://github.com/Snarci/RedDino](https://github.com/Snarci/RedDino)
|
| 60 |
|
| 61 |
---
|
| 62 |
|
| 63 |
## Model Details
|
| 64 |
|
| 65 |
+
- **Architecture:** ViT-base, patch size 14
|
| 66 |
+
- **SSL framework:** DINOv2 (customized for RBC morphology)
|
| 67 |
+
- **Pretraining dataset:** 1.25M RBC images from 18 datasets
|
| 68 |
+
- **Embedding size:** 768
|
| 69 |
+
- **Applications:** RBC morphology classification, feature extraction, batch-effect–robust analysis
|
| 70 |
|
| 71 |
## Example Usage
|
| 72 |
|