Update README.md
Browse files
README.md
CHANGED
|
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
| 35 |
-
It achieves
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
@@ -131,14 +131,11 @@ model.save_pretrained("Meta-Llama-3.1-70B-Instruct-quantized.w4a16")
|
|
| 131 |
|
| 132 |
## Evaluation
|
| 133 |
|
| 134 |
-
The model was evaluated on
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
--tasks openllm \
|
| 140 |
-
--batch_size auto
|
| 141 |
-
```
|
| 142 |
|
| 143 |
### Accuracy
|
| 144 |
|
|
@@ -148,96 +145,170 @@ lm_eval \
|
|
| 148 |
<td><strong>Benchmark</strong>
|
| 149 |
</td>
|
| 150 |
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
|
| 151 |
-
</td>
|
| 152 |
-
<td><strong>hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4</strong>
|
| 153 |
</td>
|
| 154 |
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w4a16 (this model)</strong>
|
| 155 |
</td>
|
| 156 |
-
<td><strong>Recovery
|
| 157 |
</td>
|
| 158 |
</tr>
|
| 159 |
<tr>
|
| 160 |
<td>MMLU (5-shot)
|
| 161 |
</td>
|
| 162 |
-
<td>
|
| 163 |
-
</td>
|
| 164 |
-
<td>81.42
|
| 165 |
</td>
|
| 166 |
-
<td>
|
| 167 |
</td>
|
| 168 |
-
<td>99.
|
| 169 |
</td>
|
| 170 |
</tr>
|
| 171 |
<tr>
|
| 172 |
-
<td>
|
| 173 |
</td>
|
| 174 |
-
<td>
|
| 175 |
-
</td>
|
| 176 |
-
<td>70.13
|
| 177 |
</td>
|
| 178 |
-
<td>
|
| 179 |
</td>
|
| 180 |
-
<td>99.
|
| 181 |
</td>
|
| 182 |
</tr>
|
| 183 |
<tr>
|
| 184 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
</td>
|
| 186 |
-
<td>
|
| 187 |
</td>
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
</td>
|
| 190 |
-
<td>
|
| 191 |
</td>
|
| 192 |
-
<td>
|
|
|
|
|
|
|
| 193 |
</td>
|
| 194 |
</tr>
|
| 195 |
<tr>
|
| 196 |
<td>Hellaswag (10-shot)
|
| 197 |
-
</td>
|
| 198 |
-
<td>86.33
|
| 199 |
</td>
|
| 200 |
-
<td>86.
|
| 201 |
</td>
|
| 202 |
-
<td>86.
|
| 203 |
</td>
|
| 204 |
-
<td>99.
|
| 205 |
</td>
|
| 206 |
</tr>
|
| 207 |
<tr>
|
| 208 |
<td>Winogrande (5-shot)
|
| 209 |
</td>
|
| 210 |
-
<td>85.
|
| 211 |
</td>
|
| 212 |
-
<td>
|
| 213 |
</td>
|
| 214 |
-
<td>
|
| 215 |
-
</td>
|
| 216 |
-
<td>99.45%
|
| 217 |
</td>
|
| 218 |
</tr>
|
| 219 |
<tr>
|
| 220 |
-
<td>TruthfulQA (0-shot)
|
| 221 |
-
</td>
|
| 222 |
-
<td>59.90
|
| 223 |
</td>
|
| 224 |
-
<td>
|
| 225 |
</td>
|
| 226 |
<td>58.74
|
| 227 |
</td>
|
| 228 |
-
<td>
|
| 229 |
</td>
|
| 230 |
</tr>
|
| 231 |
<tr>
|
| 232 |
<td><strong>Average</strong>
|
| 233 |
</td>
|
| 234 |
-
<td><strong>
|
| 235 |
</td>
|
| 236 |
-
<td><strong>
|
| 237 |
</td>
|
| 238 |
-
<td><strong>
|
| 239 |
-
</td>
|
| 240 |
-
<td><strong>99.83%</strong>
|
| 241 |
</td>
|
| 242 |
</tr>
|
| 243 |
-
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
| 35 |
+
It achieves scores within 1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag and Winogrande, and within 3.2% for TruthfulQA.
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
|
|
| 131 |
|
| 132 |
## Evaluation
|
| 133 |
|
| 134 |
+
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
| 135 |
+
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 136 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
| 137 |
+
|
| 138 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
### Accuracy
|
| 141 |
|
|
|
|
| 145 |
<td><strong>Benchmark</strong>
|
| 146 |
</td>
|
| 147 |
<td><strong>Meta-Llama-3.1-70B-Instruct </strong>
|
|
|
|
|
|
|
| 148 |
</td>
|
| 149 |
<td><strong>Meta-Llama-3.1-70B-Instruct-quantized.w4a16 (this model)</strong>
|
| 150 |
</td>
|
| 151 |
+
<td><strong>Recovery</strong>
|
| 152 |
</td>
|
| 153 |
</tr>
|
| 154 |
<tr>
|
| 155 |
<td>MMLU (5-shot)
|
| 156 |
</td>
|
| 157 |
+
<td>83.94
|
|
|
|
|
|
|
| 158 |
</td>
|
| 159 |
+
<td>83.55
|
| 160 |
</td>
|
| 161 |
+
<td>99.5%
|
| 162 |
</td>
|
| 163 |
</tr>
|
| 164 |
<tr>
|
| 165 |
+
<td>MMLU (CoT, 0-shot)
|
| 166 |
</td>
|
| 167 |
+
<td>86.23
|
|
|
|
|
|
|
| 168 |
</td>
|
| 169 |
+
<td>85.57
|
| 170 |
</td>
|
| 171 |
+
<td>99.2%
|
| 172 |
</td>
|
| 173 |
</tr>
|
| 174 |
<tr>
|
| 175 |
+
<td>ARC Challenge (0-shot)
|
| 176 |
+
</td>
|
| 177 |
+
<td>93.34
|
| 178 |
+
</td>
|
| 179 |
+
<td>92.83
|
| 180 |
</td>
|
| 181 |
+
<td>99.5%
|
| 182 |
</td>
|
| 183 |
+
</tr>
|
| 184 |
+
<tr>
|
| 185 |
+
<td>GSM-8K (CoT, 8-shot, strict-match)
|
| 186 |
</td>
|
| 187 |
+
<td>95.38
|
| 188 |
</td>
|
| 189 |
+
<td>94.39
|
| 190 |
+
</td>
|
| 191 |
+
<td>99.0%
|
| 192 |
</td>
|
| 193 |
</tr>
|
| 194 |
<tr>
|
| 195 |
<td>Hellaswag (10-shot)
|
|
|
|
|
|
|
| 196 |
</td>
|
| 197 |
+
<td>86.66
|
| 198 |
</td>
|
| 199 |
+
<td>86.06
|
| 200 |
</td>
|
| 201 |
+
<td>99.3%
|
| 202 |
</td>
|
| 203 |
</tr>
|
| 204 |
<tr>
|
| 205 |
<td>Winogrande (5-shot)
|
| 206 |
</td>
|
| 207 |
+
<td>85.32
|
| 208 |
</td>
|
| 209 |
+
<td>85.16
|
| 210 |
</td>
|
| 211 |
+
<td>99.8%
|
|
|
|
|
|
|
| 212 |
</td>
|
| 213 |
</tr>
|
| 214 |
<tr>
|
| 215 |
+
<td>TruthfulQA (0-shot, mc2)
|
|
|
|
|
|
|
| 216 |
</td>
|
| 217 |
+
<td>60.65
|
| 218 |
</td>
|
| 219 |
<td>58.74
|
| 220 |
</td>
|
| 221 |
+
<td>96.8%
|
| 222 |
</td>
|
| 223 |
</tr>
|
| 224 |
<tr>
|
| 225 |
<td><strong>Average</strong>
|
| 226 |
</td>
|
| 227 |
+
<td><strong>84.50</strong>
|
| 228 |
</td>
|
| 229 |
+
<td><strong>83.76</strong>
|
| 230 |
</td>
|
| 231 |
+
<td><strong>99.1%</strong>
|
|
|
|
|
|
|
| 232 |
</td>
|
| 233 |
</tr>
|
| 234 |
+
</table>
|
| 235 |
+
|
| 236 |
+
### Reproduction
|
| 237 |
+
|
| 238 |
+
The results were obtained using the following commands:
|
| 239 |
+
|
| 240 |
+
#### MMLU
|
| 241 |
+
```
|
| 242 |
+
lm_eval \
|
| 243 |
+
--model vllm \
|
| 244 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
| 245 |
+
--tasks mmlu_llama_3.1_instruct \
|
| 246 |
+
--fewshot_as_multiturn \
|
| 247 |
+
--apply_chat_template \
|
| 248 |
+
--num_fewshot 5 \
|
| 249 |
+
--batch_size auto
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
#### MMLU-CoT
|
| 253 |
+
```
|
| 254 |
+
lm_eval \
|
| 255 |
+
--model vllm \
|
| 256 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
| 257 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 258 |
+
--apply_chat_template \
|
| 259 |
+
--num_fewshot 0 \
|
| 260 |
+
--batch_size auto
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
#### ARC-Challenge
|
| 264 |
+
```
|
| 265 |
+
lm_eval \
|
| 266 |
+
--model vllm \
|
| 267 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
| 268 |
+
--tasks arc_challenge_llama_3.1_instruct \
|
| 269 |
+
--apply_chat_template \
|
| 270 |
+
--num_fewshot 0 \
|
| 271 |
+
--batch_size auto
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
#### GSM-8K
|
| 275 |
+
```
|
| 276 |
+
lm_eval \
|
| 277 |
+
--model vllm \
|
| 278 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
| 279 |
+
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 280 |
+
--fewshot_as_multiturn \
|
| 281 |
+
--apply_chat_template \
|
| 282 |
+
--num_fewshot 8 \
|
| 283 |
+
--batch_size auto
|
| 284 |
+
```
|
| 285 |
+
|
| 286 |
+
#### Hellaswag
|
| 287 |
+
```
|
| 288 |
+
lm_eval \
|
| 289 |
+
--model vllm \
|
| 290 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
| 291 |
+
--tasks hellaswag \
|
| 292 |
+
--num_fewshot 10 \
|
| 293 |
+
--batch_size auto
|
| 294 |
+
```
|
| 295 |
+
|
| 296 |
+
#### Winogrande
|
| 297 |
+
```
|
| 298 |
+
lm_eval \
|
| 299 |
+
--model vllm \
|
| 300 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
| 301 |
+
--tasks winogrande \
|
| 302 |
+
--num_fewshot 5 \
|
| 303 |
+
--batch_size auto
|
| 304 |
+
```
|
| 305 |
+
|
| 306 |
+
#### TruthfulQA
|
| 307 |
+
```
|
| 308 |
+
lm_eval \
|
| 309 |
+
--model vllm \
|
| 310 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
|
| 311 |
+
--tasks truthfulqa \
|
| 312 |
+
--num_fewshot 0 \
|
| 313 |
+
--batch_size auto
|
| 314 |
+
```
|