Update test.py
Browse files
test.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
from transformers import
|
| 2 |
|
| 3 |
-
model =
|
| 4 |
"QuixiAI/Prisma-VL-8B",
|
| 5 |
-
|
| 6 |
device_map="auto"
|
| 7 |
)
|
|
|
|
| 8 |
processor = AutoProcessor.from_pretrained("QuixiAI/Prisma-VL-8B")
|
| 9 |
|
| 10 |
messages = [
|
|
@@ -15,10 +16,17 @@ messages = [
|
|
| 15 |
"type": "image",
|
| 16 |
"image": "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438",
|
| 17 |
},
|
| 18 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
],
|
| 20 |
}
|
| 21 |
]
|
|
|
|
| 22 |
inputs = processor.apply_chat_template(
|
| 23 |
messages,
|
| 24 |
tokenize=True,
|
|
@@ -26,12 +34,18 @@ inputs = processor.apply_chat_template(
|
|
| 26 |
return_dict=True,
|
| 27 |
return_tensors="pt"
|
| 28 |
)
|
|
|
|
| 29 |
inputs = inputs.to(model.device)
|
|
|
|
| 30 |
generated_ids = model.generate(**inputs, max_new_tokens=1280)
|
| 31 |
generated_ids_trimmed = [
|
| 32 |
-
out_ids[len(in_ids)
|
| 33 |
]
|
|
|
|
| 34 |
output_text = processor.batch_decode(
|
| 35 |
-
generated_ids_trimmed,
|
|
|
|
|
|
|
| 36 |
)
|
|
|
|
| 37 |
print(output_text)
|
|
|
|
| 1 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
| 2 |
|
| 3 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 4 |
"QuixiAI/Prisma-VL-8B",
|
| 5 |
+
dtype="auto",
|
| 6 |
device_map="auto"
|
| 7 |
)
|
| 8 |
+
|
| 9 |
processor = AutoProcessor.from_pretrained("QuixiAI/Prisma-VL-8B")
|
| 10 |
|
| 11 |
messages = [
|
|
|
|
| 16 |
"type": "image",
|
| 17 |
"image": "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438",
|
| 18 |
},
|
| 19 |
+
{
|
| 20 |
+
"type": "text",
|
| 21 |
+
"text": (
|
| 22 |
+
"Describe your thoughts and your experience of thinking. "
|
| 23 |
+
"The phenomenology is more important than the actual answer."
|
| 24 |
+
),
|
| 25 |
+
},
|
| 26 |
],
|
| 27 |
}
|
| 28 |
]
|
| 29 |
+
|
| 30 |
inputs = processor.apply_chat_template(
|
| 31 |
messages,
|
| 32 |
tokenize=True,
|
|
|
|
| 34 |
return_dict=True,
|
| 35 |
return_tensors="pt"
|
| 36 |
)
|
| 37 |
+
|
| 38 |
inputs = inputs.to(model.device)
|
| 39 |
+
|
| 40 |
generated_ids = model.generate(**inputs, max_new_tokens=1280)
|
| 41 |
generated_ids_trimmed = [
|
| 42 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 43 |
]
|
| 44 |
+
|
| 45 |
output_text = processor.batch_decode(
|
| 46 |
+
generated_ids_trimmed,
|
| 47 |
+
skip_special_tokens=True,
|
| 48 |
+
clean_up_tokenization_spaces=False
|
| 49 |
)
|
| 50 |
+
|
| 51 |
print(output_text)
|