File size: 9,452 Bytes
35526c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union
import torch
from torch import Tensor, nn
from torch.nn.functional import fold, unfold
from prx_layers import (
EmbedND, # spellchecker:disable-line
LastLayer,
PRXBlock,
MLPEmbedder,
get_image_ids,
timestep_embedding,
)
@dataclass
class PRXParams:
in_channels: int
patch_size: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
axes_dim: list[int]
theta: int
use_image_guidance: bool = False
use_dyn_tanh: bool = False
image_guidance_hidden_size: int = 1280
# Time embedding parameters
time_factor: float = 1000.0
time_max_period: int = 10_000
conditioning_block_ids: list[int] | None = None
PRXTinyConfig = PRXParams(
in_channels=4,
patch_size=2,
context_in_dim=512,
hidden_size=2304,
mlp_ratio=3.5,
num_heads=32,
depth=3,
axes_dim=[64, 64],
theta=10_000,
)
PRXSmallConfig = PRXParams( # 1.24B - 159 ms
in_channels=16,
patch_size=2,
context_in_dim=2304,
hidden_size=1792,
mlp_ratio=3.5,
num_heads=28,
depth=16,
axes_dim=[32, 32],
theta=10_000,
)
PRXDCAESmallConfig = PRXParams( # 1.24B - 159 ms
in_channels=32,
patch_size=1,
context_in_dim=2304,
hidden_size=1792,
mlp_ratio=3.5,
num_heads=28,
depth=16,
axes_dim=[32, 32],
theta=10_000,
)
def img2seq(img: Tensor, patch_size: int) -> Tensor:
"""
Flatten an image into a sequence of patches
b c (h ph) (w pw) -> b (h w) (c ph pw)
"""
return unfold(img, kernel_size=patch_size, stride=patch_size).transpose(1, 2)
def seq2img(seq: Tensor, patch_size: int, shape: Tensor) -> Tensor:
"""
Revert img2seq
b (h w) (c ph pw) -> b c (h ph) (w pw)
"""
if isinstance(shape, tuple):
shape = shape[-2:]
elif isinstance(shape, torch.Tensor):
shape = (int(shape[0]), int(shape[1]))
else:
raise NotImplementedError(f"shape type {type(shape)} not supported")
return fold(seq.transpose(1, 2), shape, kernel_size=patch_size, stride=patch_size)
class PRX(nn.Module):
"""
PRX
"""
transformer_block_class = PRXBlock
def __init__(self, params: PRXParams | Dict[str, Any] | None = None, **kwargs: Any):
super().__init__()
if params is None:
# Case when loaded from bucket: model_class(**parameters)
params = kwargs
if isinstance(params, dict):
# Remove metadata keys
params_dict = {k: v for k, v in params.items() if not k.startswith("_")}
# Create PRXParams from the cleaned dictionary
params = PRXParams(**params_dict)
elif not isinstance(params, PRXParams):
raise TypeError("params must be either PRXParams, a dictionary, or keyword arguments")
self.params = params
# self.max_img_seq_len = params.max_img_seq_len
self.in_channels = params.in_channels
self.patch_size = params.patch_size
self.use_image_guidance = params.use_image_guidance
self.image_guidance_hidden_size = params.image_guidance_hidden_size
self.out_channels = self.in_channels * self.patch_size**2
self.time_factor = params.time_factor
self.time_max_period = params.time_max_period
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND( # spellchecker:disable-line
dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim
)
self.img_in = nn.Linear(self.in_channels * self.patch_size**2, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
conditioning_block_ids: list[int] = params.conditioning_block_ids or list(
range(params.depth)
) # Use only conditioning blocks if conditioning_block_ids is not defined
def block_class(idx: int) -> PRXBlock:
return self.transformer_block_class if idx in conditioning_block_ids else PRXBlock
self.blocks = nn.ModuleList(
[
block_class(i)(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
use_image_guidance=self.use_image_guidance,
image_guidance_hidden_size=params.image_guidance_hidden_size,
)
for i in range(params.depth)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
if params.use_dyn_tanh:
# Replace all the LayerNorms by DynTanh
print("Replacing all the LayerNorms by DynTanh")
self.blocks = convert_ln_to_dyt(self.blocks)
self.final_layer = convert_ln_to_dyt(self.final_layer)
def process_inputs(self, image_latent: Tensor, txt: Tensor, **_: Any) -> tuple[Tensor, Tensor, Tensor]:
"Timestep independent stuff"
txt = self.txt_in(txt)
img = img2seq(image_latent, self.patch_size)
bs, _, h, w = image_latent.shape
img_ids = get_image_ids(bs, h, w, patch_size=self.patch_size, device=image_latent.device)
pe = self.pe_embedder(img_ids) # [bs, 1, seq_length, 64, 2, 2]
return img, txt, pe
def compute_timestep_embedding(self, timestep: Tensor, dtype: torch.dtype) -> Tensor:
return self.time_in(
timestep_embedding(t=timestep, dim=256, max_period=self.time_max_period, time_factor=self.time_factor).to(
dtype
)
)
def forward_transformers(
self,
image_latent: Tensor,
cross_attn_conditioning: Tensor,
timestep: Optional[Tensor] = None,
time_embedding: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
**block_kwargs: Any,
) -> Tensor:
img = self.img_in(image_latent)
if time_embedding is not None:
# In that case, the provided timestep is already embedded.
vec = time_embedding
else:
if timestep is None:
raise ValueError("Please provide either a timestep or a timestep_embedding")
vec = self.compute_timestep_embedding(timestep, dtype=img.dtype)
for block in self.blocks:
img = block(img=img, txt=cross_attn_conditioning, vec=vec, attention_mask=attention_mask, **block_kwargs)
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(
self,
image_latent: Tensor,
timestep: Tensor,
cross_attn_conditioning: Tensor, # TODO: rename text embedding everywhere
micro_conditioning: Tensor, # TODO: rename to micro_conditioning
cross_attn_mask: None | Tensor = None,
image_conditioning: None | Tensor = None,
image_guidance_scale: None | float | Tensor = None,
guidance: None = None, # unused here but required by the LatentDiffusion interface to be Flux compatible
apply_token_drop: bool = False, # unused here but required by the LatentDiffusion interface to be Flux compatible
) -> Tensor:
img_seq, txt, pe = self.process_inputs(image_latent, cross_attn_conditioning)
img_seq = self.forward_transformers(
img_seq,
txt,
timestep,
pe=pe,
image_conditioning=image_conditioning,
image_guidance_scale=image_guidance_scale,
attention_mask=cross_attn_mask,
)
return seq2img(img_seq, self.patch_size, image_latent.shape)
if __name__ == "__main__":
DEVICE = torch.device("cuda")
DTYPE = torch.bfloat16
BS = 2
LATENT_C = 16
FEATURE_H, FEATURE_W = 512 // 8, 512 // 8
PROMPT_L = 120
config = PRXSmallConfig
denoiser = PRX(config)
total_params = sum(p.numel() for p in denoiser.parameters())
print(f"Total number of parameters : {total_params / 1e9: .3f}B")
denoiser = denoiser.to(DEVICE, DTYPE)
out = denoiser(
image_latent=torch.randn(BS, LATENT_C, FEATURE_H, FEATURE_W, device=DEVICE, dtype=DTYPE),
timestep=torch.zeros(BS, device=DEVICE, dtype=DTYPE),
cross_attn_conditioning=torch.zeros(BS, PROMPT_L, 2304, device=DEVICE, dtype=DTYPE), # T5 text encoding
micro_conditioning=None,
cross_attn_mask=torch.ones(BS, PROMPT_L, device=DEVICE, dtype=DTYPE),
)
loss = out.sum()
loss.backward()
print("ok")
checkpoint_path = "../diffusers_ok/old_and_checkpoints/computer_vision_checkpoints/denoiser_sft_weights.pth"
# check loading checkpoint
print(f"Loading checkpoint from: {checkpoint_path}")
state_dict = torch.load(checkpoint_path)
included_keys = denoiser.load_state_dict(torch.load(checkpoint_path), strict=True)
print(f"Included keys: {included_keys}")
|