Merged ColGemma3 Model
This model is a merged version of multiple ColGemma3 models using the linear merging technique.
Source Models
- Nayana-cognitivelab/NayanaEmbed-ColGemma3-Modal-1848-colbert
- Nayana-cognitivelab/NayanaEmbed-ColGemma3-MultiGPU-merged-1610-22-colbert
Merge Method: LINEAR
Linear interpolation: Weighted average of model parameters.
Model Architecture
ColGemma3 is a vision-language model for late interaction retrieval:
- Base: Gemma3 vision-language model
- Vision Encoder: Processes images into patch embeddings
- Custom Projection: Projects embeddings to 128 dimensions
- Retrieval: Uses MaxSim scoring for multi-vector retrieval
Usage
from colpali_engine.models.gemma3.colgemma3 import ColGemma3, ColGemmaProcessor3
from PIL import Image
import torch
# Load model and processor
model = ColGemma3.from_pretrained("Nayana-cognitivelab/NayanaEmbed-ColGemma3-Merge-Colbert-base-nayana-linear", torch_dtype=torch.bfloat16, device_map="auto")
processor = ColGemmaProcessor3.from_pretrained("Nayana-cognitivelab/NayanaEmbed-ColGemma3-Merge-Colbert-base-nayana-linear")
# Process images
images = [Image.open("document.png")]
batch_images = processor.process_images(images).to(model.device)
# Process queries
queries = ["What is this document about?"]
batch_queries = processor.process_queries(queries).to(model.device)
# Generate embeddings
with torch.no_grad():
img_embeddings = model(**batch_images)
query_embeddings = model(**batch_queries)
# Compute similarity scores
scores = processor.score([query_embeddings[0]], [img_embeddings[0]])
Citation
If you use this model, please cite the original ColGemma3 work and the source models.
This model was automatically merged using Modal infrastructure.
- Downloads last month
- 19