Upload folder using huggingface_hub
Browse files- README.md +79 -27
- config.json +7 -3
- dnabert2_exon_intron_classification.py +100 -0
README.md
CHANGED
|
@@ -1,62 +1,114 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
base_model:
|
| 4 |
-
- zhihan1996/DNABERT-2-117M
|
| 5 |
tags:
|
| 6 |
-
- genomics
|
| 7 |
-
- bioinformatics
|
| 8 |
-
- DNA
|
| 9 |
-
- sequence-classification
|
| 10 |
-
- introns
|
| 11 |
-
- exons
|
| 12 |
-
- DNABERT2
|
| 13 |
---
|
|
|
|
| 14 |
# Exons and Introns Classifier
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Architecture
|
|
|
|
| 19 |
- Base model: DNABERT2
|
| 20 |
- Approach: Full-sequence classification
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
## Usage
|
| 24 |
|
|
|
|
|
|
|
| 25 |
```python
|
| 26 |
-
from transformers import
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
```
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
The model should predict the next token as the class label: 0 (Intron) or 1 (Exon).
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
The model was trained on a processed version of GenBank sequences spanning multiple species.
|
|
|
|
|
|
|
| 40 |
|
| 41 |
## Publications
|
| 42 |
|
| 43 |
-
- **Full Paper
|
| 44 |
Achieved **2nd place** at the _Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2025)_, organized by the Brazilian Computer Society (SBC), held in Fortaleza, Ceará, Brazil.
|
| 45 |
-
[https://doi.org/10.5753/kdmile.2025.247575](https://doi.org/10.5753/kdmile.2025.247575)
|
| 46 |
-
- **Short Paper
|
| 47 |
Presented at the _IEEE International Conference on Bioinformatics and BioEngineering (BIBE 2025)_, held in Athens, Greece.
|
| 48 |
-
[https://doi.org/10.1109/BIBE66822.2025.00113](https://doi.org/10.1109/BIBE66822.2025.00113)
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
## Training
|
| 51 |
|
| 52 |
- Trained on an architecture with 8x H100 GPUs.
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
## GitHub Repository
|
| 55 |
|
| 56 |
The full code for **data processing, model training, and inference** is available on GitHub:
|
| 57 |
[CodingDNATransformers](https://github.com/GustavoHCruz/CodingDNATransformers)
|
| 58 |
|
| 59 |
-
You can find scripts for:
|
| 60 |
-
|
| 61 |
-
-
|
| 62 |
-
-
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
base_model:
|
| 4 |
+
- zhihan1996/DNABERT-2-117M
|
| 5 |
tags:
|
| 6 |
+
- genomics
|
| 7 |
+
- bioinformatics
|
| 8 |
+
- DNA
|
| 9 |
+
- sequence-classification
|
| 10 |
+
- introns
|
| 11 |
+
- exons
|
| 12 |
+
- DNABERT2
|
| 13 |
---
|
| 14 |
+
|
| 15 |
# Exons and Introns Classifier
|
| 16 |
|
| 17 |
+
DNABERT2 finetuned model for **classifying DNA sequences** into **introns** and **exons**, trained on a large cross-species GenBank dataset (34,627 different species).
|
| 18 |
+
|
| 19 |
+
---
|
| 20 |
|
| 21 |
## Architecture
|
| 22 |
+
|
| 23 |
- Base model: DNABERT2
|
| 24 |
- Approach: Full-sequence classification
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
## Usage
|
| 29 |
|
| 30 |
+
You can use this model through its own custom pipeline:
|
| 31 |
+
|
| 32 |
```python
|
| 33 |
+
from transformers import pipeline
|
| 34 |
+
|
| 35 |
+
pipe = pipeline(
|
| 36 |
+
task="dnabert2-exon-intron-classification",
|
| 37 |
+
model="GustavoHCruz/ExInDNABERT2",
|
| 38 |
+
trust_remote_code=True,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
out = pipe(
|
| 42 |
+
"GCAGCAACAGTGCCCAGGGCTCTGATGAGTCTCTCATCACTTGTAAAG"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
print(out) # EXON
|
| 46 |
```
|
| 47 |
|
| 48 |
+
This model uses the same maximum context length as the standard DNABERT2 (512 tokens), but it was trained on DNA sequences of up to 256 nucleotides.
|
| 49 |
+
|
| 50 |
+
The pipeline will automatically truncate the nucleotide sequence they exceed this limit.
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
|
| 54 |
+
## Custom Usage Information
|
| 55 |
+
|
| 56 |
+
The model expects the same tokens as DNABERT2, ou seja, nucleotídeos de entrada, como por exemplo
|
| 57 |
+
|
| 58 |
+
```
|
| 59 |
+
GTAAGGAGGGGGAT
|
| 60 |
+
```
|
| 61 |
|
| 62 |
The model should predict the next token as the class label: 0 (Intron) or 1 (Exon).
|
| 63 |
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
## Dataset
|
| 67 |
|
| 68 |
+
The model was trained on a processed version of GenBank sequences spanning multiple species, available at the [DNA Coding Regions Dataset](https://huggingface.co/datasets/GustavoHCruz/DNA_coding_regions).
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
|
| 72 |
## Publications
|
| 73 |
|
| 74 |
+
- **Full Paper**
|
| 75 |
Achieved **2nd place** at the _Symposium on Knowledge Discovery, Mining and Learning (KDMiLe 2025)_, organized by the Brazilian Computer Society (SBC), held in Fortaleza, Ceará, Brazil.
|
| 76 |
+
DOI: [https://doi.org/10.5753/kdmile.2025.247575](https://doi.org/10.5753/kdmile.2025.247575).
|
| 77 |
+
- **Short Paper**
|
| 78 |
Presented at the _IEEE International Conference on Bioinformatics and BioEngineering (BIBE 2025)_, held in Athens, Greece.
|
| 79 |
+
DOI: [https://doi.org/10.1109/BIBE66822.2025.00113](https://doi.org/10.1109/BIBE66822.2025.00113).
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
|
| 83 |
## Training
|
| 84 |
|
| 85 |
- Trained on an architecture with 8x H100 GPUs.
|
| 86 |
|
| 87 |
+
---
|
| 88 |
+
|
| 89 |
+
## Metrics
|
| 90 |
+
|
| 91 |
+
**Average accuracy:** **0.9956**
|
| 92 |
+
|
| 93 |
+
| Class | Precision | Recall | F1-Score |
|
| 94 |
+
| ---------- | --------- | ------ | -------- |
|
| 95 |
+
| **Intron** | 0.9943 | 0.9922 | 0.9932 |
|
| 96 |
+
| **Exon** | 0.9962 | 0.9972 | 0.9967 |
|
| 97 |
+
|
| 98 |
+
### Notes
|
| 99 |
+
|
| 100 |
+
- Metrics were computed on a full isolated test set.
|
| 101 |
+
- The classes follow a ratio of approximately 2 exons to one intron, allowing for direct interpretation of the scores.
|
| 102 |
+
|
| 103 |
+
---
|
| 104 |
+
|
| 105 |
## GitHub Repository
|
| 106 |
|
| 107 |
The full code for **data processing, model training, and inference** is available on GitHub:
|
| 108 |
[CodingDNATransformers](https://github.com/GustavoHCruz/CodingDNATransformers)
|
| 109 |
|
| 110 |
+
You can find scripts for:
|
| 111 |
+
|
| 112 |
+
- Preprocessing GenBank sequences
|
| 113 |
+
- Fine-tuning models
|
| 114 |
+
- Evaluating and using the trained models
|
config.json
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"alibi_starting_size": 512,
|
| 3 |
-
"architectures": [
|
| 4 |
-
"BertForSequenceClassification"
|
| 5 |
-
],
|
| 6 |
"attention_probs_dropout_prob": 0.0,
|
| 7 |
"auto_map": {
|
| 8 |
"AutoConfig": "configuration_bert.BertConfig",
|
|
@@ -11,6 +9,12 @@
|
|
| 11 |
"AutoModelForSequenceClassification": "bert_layers.BertForSequenceClassification"
|
| 12 |
},
|
| 13 |
"classifier_dropout": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"dtype": "float32",
|
| 15 |
"gradient_checkpointing": false,
|
| 16 |
"hidden_act": "gelu",
|
|
|
|
| 1 |
{
|
| 2 |
"alibi_starting_size": 512,
|
| 3 |
+
"architectures": ["BertForSequenceClassification"],
|
|
|
|
|
|
|
| 4 |
"attention_probs_dropout_prob": 0.0,
|
| 5 |
"auto_map": {
|
| 6 |
"AutoConfig": "configuration_bert.BertConfig",
|
|
|
|
| 9 |
"AutoModelForSequenceClassification": "bert_layers.BertForSequenceClassification"
|
| 10 |
},
|
| 11 |
"classifier_dropout": null,
|
| 12 |
+
"custom_pipelines": {
|
| 13 |
+
"dnabert2-exon-intron-classification": {
|
| 14 |
+
"impl": "dnabert2_exon_intron_classification.DNABERT2ExonIntronClassificationPipeline",
|
| 15 |
+
"pt": ["BertForSequenceClassification"]
|
| 16 |
+
}
|
| 17 |
+
},
|
| 18 |
"dtype": "float32",
|
| 19 |
"gradient_checkpointing": false,
|
| 20 |
"hidden_act": "gelu",
|
dnabert2_exon_intron_classification.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import BertForSequenceClassification, Pipeline
|
| 5 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
| 6 |
+
from transformers.utils.generic import ModelOutput
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def process_label(p: str) -> str:
|
| 10 |
+
return "EXON" if p == 0 else "INTRON"
|
| 11 |
+
|
| 12 |
+
class DNABERT2ExonIntronClassificationPipeline(Pipeline):
|
| 13 |
+
def _sanitize_parameters(
|
| 14 |
+
self,
|
| 15 |
+
**kwargs
|
| 16 |
+
):
|
| 17 |
+
preprocess_kwargs = {}
|
| 18 |
+
|
| 19 |
+
for k in ("max_length"):
|
| 20 |
+
if k in kwargs:
|
| 21 |
+
preprocess_kwargs[k] = kwargs[k]
|
| 22 |
+
|
| 23 |
+
forward_kwargs = {
|
| 24 |
+
k: v for k, v in kwargs.items()
|
| 25 |
+
if k not in preprocess_kwargs
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
postprocess_kwargs = {}
|
| 29 |
+
|
| 30 |
+
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
| 31 |
+
|
| 32 |
+
def preprocess(
|
| 33 |
+
self,
|
| 34 |
+
input_,
|
| 35 |
+
**preprocess_parameters
|
| 36 |
+
):
|
| 37 |
+
assert self.tokenizer
|
| 38 |
+
|
| 39 |
+
if isinstance(input_, str):
|
| 40 |
+
sequence = input_
|
| 41 |
+
elif isinstance(input_, dict):
|
| 42 |
+
sequence = input_.get("sequence", "")
|
| 43 |
+
else:
|
| 44 |
+
raise TypeError("input_ must be str or dict with 'sequence' key")
|
| 45 |
+
|
| 46 |
+
sequence = sequence[:256]
|
| 47 |
+
|
| 48 |
+
max_length = preprocess_parameters.get("max_length", 256)
|
| 49 |
+
if not isinstance(max_length, int):
|
| 50 |
+
raise TypeError("max_length must be an int")
|
| 51 |
+
|
| 52 |
+
token_kwargs: dict[str, Any] = {"return_tensors": "pt"}
|
| 53 |
+
token_kwargs["max_length"] = max_length
|
| 54 |
+
token_kwargs["truncation"] = True
|
| 55 |
+
|
| 56 |
+
enc = self.tokenizer(sequence, **token_kwargs).to(self.model.device)
|
| 57 |
+
|
| 58 |
+
return {"prompt": sequence, "inputs": enc}
|
| 59 |
+
|
| 60 |
+
def _forward(self, input_tensors: dict, **forward_params):
|
| 61 |
+
assert isinstance(self.model, BertForSequenceClassification)
|
| 62 |
+
kwargs = dict(forward_params)
|
| 63 |
+
|
| 64 |
+
inputs = input_tensors.get("inputs")
|
| 65 |
+
|
| 66 |
+
if inputs is None:
|
| 67 |
+
raise ValueError("Model inputs missing in input_tensors (expected key 'inputs').")
|
| 68 |
+
|
| 69 |
+
if hasattr(inputs, "items") and not isinstance(inputs, torch.Tensor):
|
| 70 |
+
try:
|
| 71 |
+
expanded_inputs: dict[str, torch.Tensor] = {k: v.to(self.model.device) if isinstance(v, torch.Tensor) else v for k, v in dict(inputs).items()}
|
| 72 |
+
except Exception:
|
| 73 |
+
expanded_inputs = {}
|
| 74 |
+
for k, v in dict(inputs).items():
|
| 75 |
+
expanded_inputs[k] = v.to(self.model.device) if isinstance(v, torch.Tensor) else v
|
| 76 |
+
else:
|
| 77 |
+
if isinstance(inputs, torch.Tensor):
|
| 78 |
+
expanded_inputs = {"input_ids": inputs.to(self.model.device)}
|
| 79 |
+
else:
|
| 80 |
+
expanded_inputs = {"input_ids": torch.tensor(inputs, device=self.model.device)}
|
| 81 |
+
|
| 82 |
+
self.model.eval()
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
outputs = self.model(**expanded_inputs, **kwargs)
|
| 85 |
+
|
| 86 |
+
pred_id = torch.argmax(outputs.logits, dim=-1).item()
|
| 87 |
+
|
| 88 |
+
return ModelOutput({"pred_id": pred_id})
|
| 89 |
+
|
| 90 |
+
def postprocess(self, model_outputs: dict, **kwargs):
|
| 91 |
+
assert self.tokenizer
|
| 92 |
+
|
| 93 |
+
pred_id = model_outputs["pred_id"]
|
| 94 |
+
return process_label(pred_id)
|
| 95 |
+
|
| 96 |
+
PIPELINE_REGISTRY.register_pipeline(
|
| 97 |
+
"dnabert2-exon-intron-classification",
|
| 98 |
+
pipeline_class=DNABERT2ExonIntronClassificationPipeline,
|
| 99 |
+
pt_model=BertForSequenceClassification,
|
| 100 |
+
)
|