--- license: cc-by-4.0 ---
## Results
Table: Comparison on 7 distinct degradation tasks introduced in [1].
| Methods | SR | Blur | Noise | JPEG | Rain | Haze | Dark | Avg. |
|---------|-----|------|-------|------|------|------|------|------|
| SRResNet | 25.52 | 30.01 | 30.49 | 32.46 | 32.38 | 25.57 | 30.20 | 29.52 |
| SRResNet-S [1] | 25.72 | 30.49 | 30.67 | 32.73 | 32.81 | 25.78 | 30.45 | 29.84 |
| **SRResNet (Ours)** | **25.55** | **30.65** | **30.65** | **32.92** | **35.20** | **26.16** | **32.04** | **30.45** |
| Uformer | 25.80 | 30.53 | 30.84 | 33.13 | 33.39 | 27.93 | 33.27 | 30.70 |
| Uformer-S [1] | 26.07 | 31.11 | 30.96 | 33.27 | 35.96 | 28.29 | 32.80 | 31.21 |
| **Uformer (Ours)** | **26.11** | **31.51** | **31.20** | **33.46** | **38.13** | **30.91** | **38.24** | **32.79** |
Table: Comparisons under the three-degradation all-in-one setting: a unified model is trained on a combined set of images obtained from all degradation types and levels.
| Method | Dehazing on SOTS | Deraining on Rain100L | Denoising on BSD68 $\sigma=15$ | Denoising on BSD68 $\sigma=25$ | Denoising on BSD68 $\sigma=50$ | Average |
|--------|-------------------|------------------------|--------------------------------|--------------------------------|--------------------------------|---------|
| BRDNet [1] | 23.23/0.895 | 27.42/0.895 | 32.26/0.898 | 29.76/0.836 | 26.34/0.693 | 27.80/0.843 |
| LPNet [2] | 20.84/0.828 | 24.88/0.784 | 26.47/0.778 | 24.77/0.748 | 21.26/0.552 | 23.64/0.738 |
| FDGAN [3] | 24.71/0.929 | 29.89/0.933 | 30.25/0.910 | 28.81/0.868 | 26.43/0.776 | 28.02/0.883 |
| MPRNet [4] | 25.28/0.955 | 33.57/0.954 | 33.54/0.927 | 30.89/0.880 | 27.56/0.779 | 30.17/0.899 |
| DL [5] | 26.92/0.931 | 32.62/0.931 | 33.05/0.914 | 30.41/0.861 | 26.90/0.740 | 29.98/0.876 |
| AirNet [6] | 27.94/0.962 | 34.90/0.968 | 33.92/0.933 | 31.26/0.888 | 28.00/0.797 | 31.20/0.910 |
| **AirNet (Ours)** | **30.41/0.976** | **38.04/0.983** | **33.97/0.931** | **31.32/0.886** | **28.05/0.795** | **32.50/0.914** |
| PromptIR [7] | 30.58/0.974 | 36.37/0.972 | 33.98/0.933 | 31.31/0.888 | 28.06/0.799 | 32.06/0.913 |
| **PromptIR (Ours)** | **31.17/0.978** | **38.57/0.984** | **34.06/0.932** | **31.40/0.887** | **28.13/0.797** | **32.67/0.916** |
Table: Comparative results on five distinct tasks in all-in-one image restoration.
| Method | Dehazing on SOTS | Deraining on Rain100L | Denoising on BSD68 | Deblurring on GoPro | Low-Light on LOL | Average |
|--------|-------------------|------------------------|---------------------|----------------------|-------------------|---------|
| NAFNet [1] | 25.23/0.939 | 35.56/0.967 | 31.02/0.883 | 26.53/0.808 | 20.49/0.809 | 27.76/0.881 |
| MPRNet [2] | 24.27/0.937 | 38.16/0.981 | 31.35/0.889 | 26.87/0.823 | 20.84/0.824 | 28.27/0.890 |
| SwinIR [3] | 21.50/0.891 | 30.78/0.923 | 30.59/0.868 | 24.52/0.773 | 17.81/0.723 | 25.04/0.835 |
| DL [4] | 20.54/0.826 | 21.96/0.762 | 23.09/0.745 | 19.86/0.672 | 19.83/0.712 | 21.05/0.743 |
| TAPE [5] | 22.16/0.861 | 29.67/0.904 | 30.18/0.855 | 24.47/0.763 | 18.97/0.621 | 25.09/0.801 |
| IDR [6] | 25.24/0.943 | 35.63/0.965 | 31.60/0.887 | 27.87/0.846 | 21.34/0.826 | 28.34/0.893 |
| Transweather [7] | 21.32/0.885 | 29.43/0.905 | 29.00/0.841 | 25.12/0.757 | 21.21/0.792 | 25.22/0.836 |
| **Transweather (Ours)** | **29.68/0.966** | **33.09/0.952** | **30.40/0.869** | **26.63/0.815** | **23.02/0.838** | **28.56/0.888** |
| AirNet [8] | 21.04/0.884 | 32.98/0.951 | 30.91/0.882 | 24.35/0.781 | 18.18/0.735 | 25.49/0.846 |
| **AirNet (Ours)** | **27.59/0.954** | **33.95/0.962** | **30.93/0.875** | **26.13/0.801** | **17.88/0.772** | **27.30/0.873** |
Table: Comparison on deweathering tasks with Allweather dataset [3].
| Datasets | Method | PSNR ↑ | SSIM ↑ |
|----------|--------|--------|--------|
| Outdoor-Rain | All-in-One [1] | 24.71 | 0.8980 |
| | WeatherDiff₁₂₈ [2] | 29.72 | 0.9216 |
| | TransWeather [3] | 28.83 | 0.9000 |
| | **TransWeather (Ours)** | **29.75** | **0.9073** |
| Snow100K | DDMSNet [4] | 28.85 | 0.8772 |
| | All-in-One [1] | 28.33 | 0.8820 |
| | WeatherDiff₁₂₈ [2] | 29.58 | 0.8941 |
| | TransWeather [3] | 29.31 | 0.8879 |
| | **TransWeather (Ours)** | **30.62** | **0.9086** |
| RainDrop | All-in-One [1] | 31.12 | 0.9268 |
| | WeatherDiff₁₂₈ [2] | 29.66 | 0.9225 |
| | TransWeather [3] | 30.17 | 0.9157 |
| | **TransWeather (Ours)** | **31.61** | **0.9330** |
| Average | All-in-One [1] | 27.12 | 0.8933 |
| | WeatherDiff₁₂₈ [2] | 29.65 | 0.9127 |
| | TransWeather [3] | 29.44 | 0.9012 |
| | **TransWeather (Ours)** | **30.66** | **0.9163** |
Table: Comparison on de-weathering tasks on real-world datasets following [2]
| Datasets | Method | PSNR ↑ | SSIM ↑ |
|----------|--------|--------|--------|
| SPA+ | Chen et al. [1] | 37.32 | 0.97 |
| | WGWSNet [2] | 38.94 | 0.98 |
| | TransWeather [3] | 33.64 | 0.93 |
| | **TransWeather (Ours)** | **39.78** | **0.98** |
| RealSnow | Chen et al. [1] | 29.37 | 0.88 |
| | WGWSNet [2] | 29.46 | 0.85 |
| | TransWeather [3] | 29.16 | 0.82 |
| | **TransWeather (Ours)** | **29.72** | **0.91** |
| REVIDE | Chen et al. [1] | 20.10 | 0.85 |
| | WGWSNet [2] | 20.44 | 0.87 |
| | TransWeather [3] | 17.33 | 0.82 |
| | **TransWeather (Ours)** | **20.38** | **0.88** |
| Average | Chen et al. [1] | 28.93 | 0.90 |
| | WGWSNet [2] | 29.61 | 0.90 |
| | TransWeather [3] | 26.71 | 0.86 |
| | **TransWeather (Ours)** | **29.96** | **0.92** |
## Citation
If our project helps your research or work, please cite our paper or star this repo. Thank you!
```
@inproceedings{wu2025debiased,
title={Debiased All-in-one Image Restoration with Task Uncertainty Regularization},
author={Gang Wu, Junjun Jiang, Yijun Wang, Kui Jiang, and Xianming Liu},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2025}
}
```
## Acknowledgement
This project is based on [MioIR](https://github.com/Xiangtaokong/MiOIR/tree/main/basicsr), thanks for their nice sharing.