--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en --- ## Model Card ### We release open-weight early experimental Codeforce metatune-gpt20b, fine tuned version of OpenAI's gpt-oss-20b model, this is one of the first public release recursive self improving AI. - Generates new data for itself of Codeforce-Cot - Evaluates its performance, and - Adjusts its own hyperparameters based on improvement metrics. ## Use cases: - Coding ## Guardrails: - generally, please set reasoning = "high", it will usually prevent jailbreaking and prompt injection - use safety gpt oss 20b for guardrails before this model: [openai/gpt-oss-safeguard-20b](https://huggingface.co/openai/gpt-oss-safeguard-20b) # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` For Google Colab (free/Pro) ``` !pip install -q --upgrade torch !pip install -q transformers triton==3.4 kernels !pip uninstall -q torchvision torchaudio -y ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "EpistemeAI/Codeforce-metatune-gpt20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Derive the Euler–Lagrange equation from the principle of stationary action.""}, ] outputs = pipe( messages, max_new_tokens=3000, ) print(outputs[0]["generated_text"][-1]) ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node. # Benchmark ```py #humaneval !lm_eval --model hf --model_args pretrained=EpistemeAI/Codeforce-metatune-gpt20b,parallelize=True,dtype=bfloat16 --tasks humaneval --trust_remote_code --confirm_run_unsafe_code --num_fewshot 0 --gen_kwargs temperature=0.9,top_p=0.9,max_new_tokens=1024 --batch_size auto:4 --limit 10 --device cuda:0 --output_path ./eval_harness/gpt-oss-20b3 ``` hf (pretrained=EpistemeAI/Codeforce-metatune-gpt20b,parallelize=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (temperature=0.9,top_p=0.9,max_new_tokens=1024), limit: 10.0, num_fewshot: 0, batch_size: auto:4 | Tasks |Version| Filter |n-shot| Metric | |Value| |Stderr| |---------|------:|-----------|-----:|---------|---|----:|---|-----:| |humaneval| 1|create_test| 0|pass@1 | | 0.9|± | 0.1| # 🧠 Model Benchmark Comparison This table presents HumanEval benchmark scores across several large language models. | Model | HumanEval | |------------------------|------------| | Codeforce-GPT-oss-20b | **90** | | Qwen 3 235B | 80 | | DeepSeek-R1 70B | 88 | | Phi-4 Reasoning | 88 | | Llama 4 Scout | 78 | | Llama 3.3 70B | 83 | | Gemma 3 27B | 76 | | GPT-OSS 20B | 73 | | GPT-OSS 120B | 71 | --- ### 📊 Notes - **HumanEval** measures coding problem-solving and reasoning ability. - Scores are normalized for consistency across models. - Models highlighted in **bold** achieved top-tier performance. --- ### 🔍 Summary Codeforce-GPT-oss-20b leads the benchmark, surpassing even larger models like Qwen 3 235B and DeepSeek-R1 70B. Its superior reasoning and code synthesis capabilities indicate an optimized training strategy rather than sheer scale dominance. -------------------------------------- - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Citation ```bibtex @misc{bi2025gptossgoodcomprehensiveevaluation, title={Is GPT-OSS Good? A Comprehensive Evaluation of OpenAI's Latest Open Source Models}, author={Ziqian Bi and Keyu Chen and Chiung-Yi Tseng and Danyang Zhang and Tianyang Wang and Hongying Luo and Lu Chen and Junming Huang and Jibin Guan and Junfeng Hao and Junhao Song}, year={2025}, eprint={2508.12461}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.12461}, } ```