--- language: - fr base_model: - LiquidAI/LFM2-700M pipeline_tag: summarization datasets: - CATIE-AQ/frenchSUM license_name: lfm1.0 co2_eq_emissions: 8 --- ## Description Liquid.AI's [LFM2](https://huggingface.co/LiquidAI/LFM2-700M) model finetuned on [frenchSUM]([hf.co/CATIE-AQ/frenchSUM](https://huggingface.co/datasets/CATIE-AQ/frenchSUM)) dataset to summarize French texts. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "CATIE-AQ/LMF2-700M_french_summary" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="bfloat16", trust_remote_code=True, # attn_implementation="flash_attention_2" <- uncomment on compatible GPU ) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = """Résume l'article suivant :\n""" + "you_text_to_summarize" tokenizer.padding_side = "left" tokenizer.truncation_side = "right" # Apply the chat template to prepare the input input_ids = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, return_tensors="pt", tokenize=True, ).to(model.device) # Generate the output from the model output = model.generate( input_ids, do_sample=True, temperature=0.3, min_p=0.15, repetition_penalty=1.05, max_new_tokens=2048, ) summary_text = tokenizer.decode( output[0][input_ids.shape[1]:], # Slice the output tensor skip_special_tokens=True # Skip special tokens for a cleaner output ) print(summary_text) ``` ## License [LMF1.0](https://huggingface.co/LiquidAI/LFM2-1.2B/blob/main/LICENSE)