Create trainer_v2_wormhole_routing.py
Browse files- trainer_v2_wormhole_routing.py +1415 -0
trainer_v2_wormhole_routing.py
ADDED
|
@@ -0,0 +1,1415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Train DavidBeans V2: Wormhole Routing Architecture
|
| 3 |
+
===================================================
|
| 4 |
+
|
| 5 |
+
┌─────────────────┐
|
| 6 |
+
│ BEANS V2 │ "I learn where to look..."
|
| 7 |
+
│ (Wormhole ViT)│
|
| 8 |
+
│ 🌀 → 🌀 → 🌀 │ Learned sparse routing
|
| 9 |
+
└────────┬────────┘
|
| 10 |
+
│
|
| 11 |
+
▼
|
| 12 |
+
┌─────────────────┐
|
| 13 |
+
│ DAVID │ "I know the crystals..."
|
| 14 |
+
│ (Classifier) │
|
| 15 |
+
│ 💎 → 💎 → 💎 │ Multi-scale projection
|
| 16 |
+
└────────┬────────┘
|
| 17 |
+
│
|
| 18 |
+
▼
|
| 19 |
+
[Prediction]
|
| 20 |
+
|
| 21 |
+
Key findings from wormhole experiments:
|
| 22 |
+
1. When routing IS the task, routing learns structure
|
| 23 |
+
2. Auxiliary losses can be gamed - removed in V2
|
| 24 |
+
3. Gradient flow through router is critical - verified
|
| 25 |
+
4. Cross-contrastive aligns patch↔scale features
|
| 26 |
+
|
| 27 |
+
Author: AbstractPhil
|
| 28 |
+
Date: November 29, 2025
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
import torch
|
| 32 |
+
import torch.nn as nn
|
| 33 |
+
import torch.nn.functional as F
|
| 34 |
+
from torch.utils.data import DataLoader
|
| 35 |
+
from torch.optim import AdamW
|
| 36 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR, OneCycleLR
|
| 37 |
+
from tqdm.auto import tqdm
|
| 38 |
+
import time
|
| 39 |
+
import math
|
| 40 |
+
from pathlib import Path
|
| 41 |
+
from typing import Dict, Optional, Tuple, List, Union
|
| 42 |
+
from dataclasses import dataclass, field
|
| 43 |
+
import json
|
| 44 |
+
from datetime import datetime
|
| 45 |
+
import os
|
| 46 |
+
import shutil
|
| 47 |
+
|
| 48 |
+
from google.colab import userdata
|
| 49 |
+
|
| 50 |
+
os.environ['HF_TOKEN'] = userdata.get('HF_TOKEN')
|
| 51 |
+
HF_TOKEN = userdata.get('HF_TOKEN')
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
from google.colab import userdata
|
| 55 |
+
HF_TOKEN = userdata.get('HF_TOKEN')
|
| 56 |
+
os.environ['HF_TOKEN'] = HF_TOKEN
|
| 57 |
+
except:
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
# Import both model versions
|
| 61 |
+
from geofractal.model.david_beans.model import DavidBeans, DavidBeansConfig
|
| 62 |
+
from geofractal.model.david_beans.model_v2 import DavidBeansV2, DavidBeansV2Config
|
| 63 |
+
|
| 64 |
+
# HuggingFace Hub integration
|
| 65 |
+
try:
|
| 66 |
+
from huggingface_hub import HfApi, create_repo, upload_folder
|
| 67 |
+
HF_HUB_AVAILABLE = True
|
| 68 |
+
except ImportError:
|
| 69 |
+
HF_HUB_AVAILABLE = False
|
| 70 |
+
print(" [!] huggingface_hub not installed. Run: pip install huggingface_hub")
|
| 71 |
+
|
| 72 |
+
# Safetensors support
|
| 73 |
+
try:
|
| 74 |
+
from safetensors.torch import save_file as save_safetensors
|
| 75 |
+
SAFETENSORS_AVAILABLE = True
|
| 76 |
+
except ImportError:
|
| 77 |
+
SAFETENSORS_AVAILABLE = False
|
| 78 |
+
|
| 79 |
+
# TensorBoard support
|
| 80 |
+
try:
|
| 81 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 82 |
+
TENSORBOARD_AVAILABLE = True
|
| 83 |
+
except ImportError:
|
| 84 |
+
TENSORBOARD_AVAILABLE = False
|
| 85 |
+
print(" [!] tensorboard not installed. Run: pip install tensorboard")
|
| 86 |
+
|
| 87 |
+
import numpy as np
|
| 88 |
+
|
| 89 |
+
# ============================================================================
|
| 90 |
+
# TRAINING CONFIGURATION V2
|
| 91 |
+
# ============================================================================
|
| 92 |
+
|
| 93 |
+
@dataclass
|
| 94 |
+
class TrainingConfigV2:
|
| 95 |
+
"""Training configuration for DavidBeans V2 with wormhole routing."""
|
| 96 |
+
|
| 97 |
+
# Run identification
|
| 98 |
+
run_name: str = "default"
|
| 99 |
+
run_number: Optional[int] = None
|
| 100 |
+
|
| 101 |
+
# Model version
|
| 102 |
+
model_version: int = 2 # 1 = original, 2 = wormhole
|
| 103 |
+
|
| 104 |
+
# Data
|
| 105 |
+
dataset: str = "cifar100"
|
| 106 |
+
image_size: int = 32
|
| 107 |
+
batch_size: int = 128
|
| 108 |
+
num_workers: int = 4
|
| 109 |
+
|
| 110 |
+
# Training schedule
|
| 111 |
+
epochs: int = 200
|
| 112 |
+
warmup_epochs: int = 10
|
| 113 |
+
|
| 114 |
+
# Optimizer
|
| 115 |
+
learning_rate: float = 3e-4
|
| 116 |
+
weight_decay: float = 0.05
|
| 117 |
+
betas: Tuple[float, float] = (0.9, 0.999)
|
| 118 |
+
|
| 119 |
+
# Learning rate schedule
|
| 120 |
+
scheduler: str = "cosine"
|
| 121 |
+
min_lr: float = 1e-6
|
| 122 |
+
|
| 123 |
+
# Loss weights (based on experimental findings)
|
| 124 |
+
ce_weight: float = 1.0
|
| 125 |
+
contrast_weight: float = 0.5
|
| 126 |
+
# NOTE: No auxiliary routing loss - routing learns from task pressure
|
| 127 |
+
|
| 128 |
+
# Regularization
|
| 129 |
+
gradient_clip: float = 1.0
|
| 130 |
+
label_smoothing: float = 0.1
|
| 131 |
+
|
| 132 |
+
# Augmentation
|
| 133 |
+
use_augmentation: bool = True
|
| 134 |
+
mixup_alpha: float = 0.2
|
| 135 |
+
cutmix_alpha: float = 1.0
|
| 136 |
+
|
| 137 |
+
# Checkpointing
|
| 138 |
+
save_interval: int = 10
|
| 139 |
+
output_dir: str = "./checkpoints"
|
| 140 |
+
resume_from: Optional[str] = None
|
| 141 |
+
|
| 142 |
+
# TensorBoard
|
| 143 |
+
use_tensorboard: bool = True
|
| 144 |
+
log_interval: int = 50
|
| 145 |
+
log_routing: bool = True # Log routing patterns
|
| 146 |
+
|
| 147 |
+
# HuggingFace Hub
|
| 148 |
+
push_to_hub: bool = False
|
| 149 |
+
hub_repo_id: str = "AbstractPhil/geovit-david-beans"
|
| 150 |
+
hub_private: bool = False
|
| 151 |
+
|
| 152 |
+
# Device
|
| 153 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 154 |
+
|
| 155 |
+
def to_dict(self) -> Dict:
|
| 156 |
+
return {k: v for k, v in self.__dict__.items()}
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# ============================================================================
|
| 160 |
+
# ROUTING METRICS
|
| 161 |
+
# ============================================================================
|
| 162 |
+
|
| 163 |
+
class RoutingMetrics:
|
| 164 |
+
"""Track and analyze wormhole routing patterns."""
|
| 165 |
+
|
| 166 |
+
def __init__(self):
|
| 167 |
+
self.reset()
|
| 168 |
+
|
| 169 |
+
def reset(self):
|
| 170 |
+
self.route_entropies = []
|
| 171 |
+
self.route_diversities = []
|
| 172 |
+
self.grad_norms = {'query': [], 'key': []}
|
| 173 |
+
|
| 174 |
+
@torch.no_grad()
|
| 175 |
+
def compute_route_entropy(self, soft_routes: torch.Tensor) -> float:
|
| 176 |
+
"""Compute average entropy of routing distributions."""
|
| 177 |
+
# soft_routes: [B, P, K] or [B, T, K]
|
| 178 |
+
# Higher entropy = more diverse routing
|
| 179 |
+
eps = 1e-8
|
| 180 |
+
entropy = -(soft_routes * (soft_routes + eps).log()).sum(dim=-1)
|
| 181 |
+
return entropy.mean().item()
|
| 182 |
+
|
| 183 |
+
@torch.no_grad()
|
| 184 |
+
def compute_route_diversity(self, routes: torch.Tensor, num_positions: int) -> float:
|
| 185 |
+
"""Compute how many unique destinations are used."""
|
| 186 |
+
# routes: [B, P, K] indices
|
| 187 |
+
unique_per_sample = []
|
| 188 |
+
for b in range(routes.shape[0]):
|
| 189 |
+
unique = routes[b].unique().numel()
|
| 190 |
+
unique_per_sample.append(unique / num_positions)
|
| 191 |
+
return sum(unique_per_sample) / len(unique_per_sample)
|
| 192 |
+
|
| 193 |
+
def update_from_routing_info(self, routing_info: List[Dict], model: nn.Module):
|
| 194 |
+
"""Extract metrics from routing info returned by V2 model."""
|
| 195 |
+
if not routing_info:
|
| 196 |
+
return
|
| 197 |
+
|
| 198 |
+
for layer_info in routing_info:
|
| 199 |
+
# Attention routing
|
| 200 |
+
if layer_info.get('attention'):
|
| 201 |
+
attn = layer_info['attention']
|
| 202 |
+
if attn.get('weights') is not None:
|
| 203 |
+
entropy = self.compute_route_entropy(attn['weights'])
|
| 204 |
+
self.route_entropies.append(entropy)
|
| 205 |
+
if attn.get('routes') is not None:
|
| 206 |
+
P = attn['routes'].shape[1]
|
| 207 |
+
diversity = self.compute_route_diversity(attn['routes'], P)
|
| 208 |
+
self.route_diversities.append(diversity)
|
| 209 |
+
|
| 210 |
+
# Expert routing
|
| 211 |
+
if layer_info.get('expert'):
|
| 212 |
+
exp = layer_info['expert']
|
| 213 |
+
if exp.get('weights') is not None:
|
| 214 |
+
entropy = self.compute_route_entropy(exp['weights'])
|
| 215 |
+
self.route_entropies.append(entropy)
|
| 216 |
+
|
| 217 |
+
def update_grad_norms(self, model: nn.Module):
|
| 218 |
+
"""Track gradient norms through router projections."""
|
| 219 |
+
for name, param in model.named_parameters():
|
| 220 |
+
if param.grad is not None:
|
| 221 |
+
if 'query_proj' in name and 'weight' in name:
|
| 222 |
+
self.grad_norms['query'].append(param.grad.norm().item())
|
| 223 |
+
elif 'key_proj' in name and 'weight' in name:
|
| 224 |
+
self.grad_norms['key'].append(param.grad.norm().item())
|
| 225 |
+
|
| 226 |
+
def get_summary(self) -> Dict[str, float]:
|
| 227 |
+
"""Get summary statistics."""
|
| 228 |
+
summary = {}
|
| 229 |
+
|
| 230 |
+
if self.route_entropies:
|
| 231 |
+
summary['route_entropy'] = sum(self.route_entropies) / len(self.route_entropies)
|
| 232 |
+
if self.route_diversities:
|
| 233 |
+
summary['route_diversity'] = sum(self.route_diversities) / len(self.route_diversities)
|
| 234 |
+
if self.grad_norms['query']:
|
| 235 |
+
summary['grad_query'] = sum(self.grad_norms['query']) / len(self.grad_norms['query'])
|
| 236 |
+
if self.grad_norms['key']:
|
| 237 |
+
summary['grad_key'] = sum(self.grad_norms['key']) / len(self.grad_norms['key'])
|
| 238 |
+
|
| 239 |
+
return summary
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
# ============================================================================
|
| 243 |
+
# DATA LOADING (unchanged from V1)
|
| 244 |
+
# ============================================================================
|
| 245 |
+
|
| 246 |
+
def get_dataloaders(config: TrainingConfigV2) -> Tuple[DataLoader, DataLoader, int]:
|
| 247 |
+
"""Get train and test dataloaders."""
|
| 248 |
+
|
| 249 |
+
try:
|
| 250 |
+
import torchvision
|
| 251 |
+
import torchvision.transforms as T
|
| 252 |
+
|
| 253 |
+
if config.dataset == "cifar10":
|
| 254 |
+
mean, std = (0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616)
|
| 255 |
+
num_classes = 10
|
| 256 |
+
DatasetClass = torchvision.datasets.CIFAR10
|
| 257 |
+
elif config.dataset == "cifar100":
|
| 258 |
+
mean, std = (0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)
|
| 259 |
+
num_classes = 100
|
| 260 |
+
DatasetClass = torchvision.datasets.CIFAR100
|
| 261 |
+
else:
|
| 262 |
+
raise ValueError(f"Unknown dataset: {config.dataset}")
|
| 263 |
+
|
| 264 |
+
if config.use_augmentation:
|
| 265 |
+
train_transform = T.Compose([
|
| 266 |
+
T.RandomCrop(32, padding=4),
|
| 267 |
+
T.RandomHorizontalFlip(),
|
| 268 |
+
T.AutoAugment(T.AutoAugmentPolicy.CIFAR10),
|
| 269 |
+
T.ToTensor(),
|
| 270 |
+
T.Normalize(mean, std)
|
| 271 |
+
])
|
| 272 |
+
else:
|
| 273 |
+
train_transform = T.Compose([
|
| 274 |
+
T.ToTensor(),
|
| 275 |
+
T.Normalize(mean, std)
|
| 276 |
+
])
|
| 277 |
+
|
| 278 |
+
test_transform = T.Compose([
|
| 279 |
+
T.ToTensor(),
|
| 280 |
+
T.Normalize(mean, std)
|
| 281 |
+
])
|
| 282 |
+
|
| 283 |
+
train_dataset = DatasetClass(
|
| 284 |
+
root='./data', train=True, download=True, transform=train_transform
|
| 285 |
+
)
|
| 286 |
+
test_dataset = DatasetClass(
|
| 287 |
+
root='./data', train=False, download=True, transform=test_transform
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
train_loader = DataLoader(
|
| 291 |
+
train_dataset,
|
| 292 |
+
batch_size=config.batch_size,
|
| 293 |
+
shuffle=True,
|
| 294 |
+
num_workers=config.num_workers,
|
| 295 |
+
pin_memory=True,
|
| 296 |
+
persistent_workers=config.num_workers > 0,
|
| 297 |
+
drop_last=True
|
| 298 |
+
)
|
| 299 |
+
test_loader = DataLoader(
|
| 300 |
+
test_dataset,
|
| 301 |
+
batch_size=config.batch_size,
|
| 302 |
+
shuffle=False,
|
| 303 |
+
num_workers=config.num_workers,
|
| 304 |
+
pin_memory=True,
|
| 305 |
+
persistent_workers=config.num_workers > 0
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
return train_loader, test_loader, num_classes
|
| 309 |
+
|
| 310 |
+
except ImportError:
|
| 311 |
+
print(" [!] torchvision not available, using synthetic data")
|
| 312 |
+
return get_synthetic_dataloaders(config)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def get_synthetic_dataloaders(config: TrainingConfigV2) -> Tuple[DataLoader, DataLoader, int]:
|
| 316 |
+
"""Fallback synthetic data for testing."""
|
| 317 |
+
|
| 318 |
+
class SyntheticDataset(torch.utils.data.Dataset):
|
| 319 |
+
def __init__(self, size: int, image_size: int, num_classes: int):
|
| 320 |
+
self.size = size
|
| 321 |
+
self.image_size = image_size
|
| 322 |
+
self.num_classes = num_classes
|
| 323 |
+
|
| 324 |
+
def __len__(self):
|
| 325 |
+
return self.size
|
| 326 |
+
|
| 327 |
+
def __getitem__(self, idx):
|
| 328 |
+
x = torch.randn(3, self.image_size, self.image_size)
|
| 329 |
+
y = idx % self.num_classes
|
| 330 |
+
return x, y
|
| 331 |
+
|
| 332 |
+
num_classes = 100 if config.dataset == "cifar100" else 10
|
| 333 |
+
train_dataset = SyntheticDataset(5000, config.image_size, num_classes)
|
| 334 |
+
test_dataset = SyntheticDataset(1000, config.image_size, num_classes)
|
| 335 |
+
|
| 336 |
+
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
|
| 337 |
+
test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False)
|
| 338 |
+
|
| 339 |
+
return train_loader, test_loader, num_classes
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
# ============================================================================
|
| 343 |
+
# MIXUP / CUTMIX AUGMENTATION
|
| 344 |
+
# ============================================================================
|
| 345 |
+
|
| 346 |
+
def mixup_data(x: torch.Tensor, y: torch.Tensor, alpha: float = 0.2):
|
| 347 |
+
"""Mixup augmentation."""
|
| 348 |
+
if alpha > 0:
|
| 349 |
+
lam = torch.distributions.Beta(alpha, alpha).sample().item()
|
| 350 |
+
else:
|
| 351 |
+
lam = 1.0
|
| 352 |
+
|
| 353 |
+
batch_size = x.size(0)
|
| 354 |
+
index = torch.randperm(batch_size, device=x.device)
|
| 355 |
+
|
| 356 |
+
mixed_x = lam * x + (1 - lam) * x[index]
|
| 357 |
+
y_a, y_b = y, y[index]
|
| 358 |
+
|
| 359 |
+
return mixed_x, y_a, y_b, lam
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def cutmix_data(x: torch.Tensor, y: torch.Tensor, alpha: float = 1.0):
|
| 363 |
+
"""CutMix augmentation."""
|
| 364 |
+
if alpha > 0:
|
| 365 |
+
lam = torch.distributions.Beta(alpha, alpha).sample().item()
|
| 366 |
+
else:
|
| 367 |
+
lam = 1.0
|
| 368 |
+
|
| 369 |
+
batch_size = x.size(0)
|
| 370 |
+
index = torch.randperm(batch_size, device=x.device)
|
| 371 |
+
|
| 372 |
+
_, _, H, W = x.shape
|
| 373 |
+
|
| 374 |
+
cut_ratio = math.sqrt(1 - lam)
|
| 375 |
+
cut_h = int(H * cut_ratio)
|
| 376 |
+
cut_w = int(W * cut_ratio)
|
| 377 |
+
|
| 378 |
+
cx = torch.randint(0, H, (1,)).item()
|
| 379 |
+
cy = torch.randint(0, W, (1,)).item()
|
| 380 |
+
|
| 381 |
+
x1 = max(0, cx - cut_h // 2)
|
| 382 |
+
x2 = min(H, cx + cut_h // 2)
|
| 383 |
+
y1 = max(0, cy - cut_w // 2)
|
| 384 |
+
y2 = min(W, cy + cut_w // 2)
|
| 385 |
+
|
| 386 |
+
mixed_x = x.clone()
|
| 387 |
+
mixed_x[:, :, x1:x2, y1:y2] = x[index, :, x1:x2, y1:y2]
|
| 388 |
+
|
| 389 |
+
lam = 1 - ((x2 - x1) * (y2 - y1)) / (H * W)
|
| 390 |
+
|
| 391 |
+
y_a, y_b = y, y[index]
|
| 392 |
+
|
| 393 |
+
return mixed_x, y_a, y_b, lam
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
# ============================================================================
|
| 397 |
+
# METRICS TRACKER
|
| 398 |
+
# ============================================================================
|
| 399 |
+
|
| 400 |
+
class MetricsTracker:
|
| 401 |
+
"""Track training metrics with EMA smoothing."""
|
| 402 |
+
|
| 403 |
+
def __init__(self, ema_decay: float = 0.9):
|
| 404 |
+
self.ema_decay = ema_decay
|
| 405 |
+
self.metrics = {}
|
| 406 |
+
self.ema_metrics = {}
|
| 407 |
+
self.history = {}
|
| 408 |
+
|
| 409 |
+
def update(self, **kwargs):
|
| 410 |
+
for k, v in kwargs.items():
|
| 411 |
+
if isinstance(v, torch.Tensor):
|
| 412 |
+
v = v.item()
|
| 413 |
+
|
| 414 |
+
if k not in self.metrics:
|
| 415 |
+
self.metrics[k] = []
|
| 416 |
+
self.ema_metrics[k] = v
|
| 417 |
+
self.history[k] = []
|
| 418 |
+
|
| 419 |
+
self.metrics[k].append(v)
|
| 420 |
+
self.ema_metrics[k] = self.ema_decay * self.ema_metrics[k] + (1 - self.ema_decay) * v
|
| 421 |
+
|
| 422 |
+
def get_ema(self, key: str) -> float:
|
| 423 |
+
return self.ema_metrics.get(key, 0.0)
|
| 424 |
+
|
| 425 |
+
def get_epoch_mean(self, key: str) -> float:
|
| 426 |
+
values = self.metrics.get(key, [])
|
| 427 |
+
return sum(values) / len(values) if values else 0.0
|
| 428 |
+
|
| 429 |
+
def end_epoch(self):
|
| 430 |
+
for k, v in self.metrics.items():
|
| 431 |
+
if v:
|
| 432 |
+
self.history[k].append(sum(v) / len(v))
|
| 433 |
+
self.metrics = {k: [] for k in self.metrics}
|
| 434 |
+
|
| 435 |
+
def get_history(self) -> Dict:
|
| 436 |
+
return self.history
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
# ============================================================================
|
| 440 |
+
# CHECKPOINT UTILITIES
|
| 441 |
+
# ============================================================================
|
| 442 |
+
|
| 443 |
+
def find_latest_checkpoint(output_dir: Path) -> Optional[Path]:
|
| 444 |
+
"""Find the most recent checkpoint in output directory."""
|
| 445 |
+
checkpoints = list(output_dir.glob("checkpoint_epoch_*.pt"))
|
| 446 |
+
|
| 447 |
+
if not checkpoints:
|
| 448 |
+
best_model = output_dir / "best_model.pt"
|
| 449 |
+
if best_model.exists():
|
| 450 |
+
return best_model
|
| 451 |
+
return None
|
| 452 |
+
|
| 453 |
+
def get_epoch(p):
|
| 454 |
+
try:
|
| 455 |
+
return int(p.stem.split("_")[-1])
|
| 456 |
+
except:
|
| 457 |
+
return 0
|
| 458 |
+
|
| 459 |
+
checkpoints.sort(key=get_epoch, reverse=True)
|
| 460 |
+
return checkpoints[0]
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_next_run_number(base_dir: Path) -> int:
|
| 464 |
+
"""Get the next run number by scanning existing run directories."""
|
| 465 |
+
if not base_dir.exists():
|
| 466 |
+
return 1
|
| 467 |
+
|
| 468 |
+
max_num = 0
|
| 469 |
+
for d in base_dir.iterdir():
|
| 470 |
+
if d.is_dir() and d.name.startswith("run_"):
|
| 471 |
+
try:
|
| 472 |
+
num = int(d.name.split("_")[1])
|
| 473 |
+
max_num = max(max_num, num)
|
| 474 |
+
except (IndexError, ValueError):
|
| 475 |
+
continue
|
| 476 |
+
|
| 477 |
+
return max_num + 1
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def generate_run_dir_name(run_number: int, run_name: str, version: int = 2) -> str:
|
| 481 |
+
"""Generate a run directory name."""
|
| 482 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 483 |
+
safe_name = "".join(c if c.isalnum() or c == "_" else "_" for c in run_name.lower())
|
| 484 |
+
safe_name = "_".join(filter(None, safe_name.split("_")))
|
| 485 |
+
return f"run_{run_number:03d}_v{version}_{safe_name}_{timestamp}"
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def find_latest_run_dir(base_dir: Path) -> Optional[Path]:
|
| 489 |
+
"""Find the most recent run directory."""
|
| 490 |
+
if not base_dir.exists():
|
| 491 |
+
return None
|
| 492 |
+
|
| 493 |
+
run_dirs = [d for d in base_dir.iterdir() if d.is_dir() and d.name.startswith("run_")]
|
| 494 |
+
|
| 495 |
+
if not run_dirs:
|
| 496 |
+
return None
|
| 497 |
+
|
| 498 |
+
run_dirs.sort(key=lambda d: d.stat().st_mtime, reverse=True)
|
| 499 |
+
return run_dirs[0]
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def load_checkpoint(
|
| 503 |
+
checkpoint_path: Path,
|
| 504 |
+
model: nn.Module,
|
| 505 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 506 |
+
device: str = "cuda"
|
| 507 |
+
) -> Tuple[int, float]:
|
| 508 |
+
"""Load checkpoint and return (start_epoch, best_acc)."""
|
| 509 |
+
print(f"\n📂 Loading checkpoint: {checkpoint_path}")
|
| 510 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 511 |
+
|
| 512 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 513 |
+
print(f" ✓ Loaded model weights")
|
| 514 |
+
|
| 515 |
+
if optimizer is not None and 'optimizer_state_dict' in checkpoint:
|
| 516 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
| 517 |
+
print(f" ✓ Loaded optimizer state")
|
| 518 |
+
|
| 519 |
+
epoch = checkpoint.get('epoch', 0)
|
| 520 |
+
best_acc = checkpoint.get('best_acc', 0.0)
|
| 521 |
+
|
| 522 |
+
print(f" ✓ Resuming from epoch {epoch + 1}, best_acc={best_acc:.2f}%")
|
| 523 |
+
|
| 524 |
+
return epoch + 1, best_acc
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
# ============================================================================
|
| 528 |
+
# HUGGINGFACE HUB INTEGRATION
|
| 529 |
+
# ============================================================================
|
| 530 |
+
|
| 531 |
+
def generate_run_readme(
|
| 532 |
+
model_config: Union[DavidBeansConfig, DavidBeansV2Config],
|
| 533 |
+
train_config: TrainingConfigV2,
|
| 534 |
+
best_acc: float,
|
| 535 |
+
run_dir_name: str
|
| 536 |
+
) -> str:
|
| 537 |
+
"""Generate README for a specific run."""
|
| 538 |
+
|
| 539 |
+
scales_str = ", ".join([str(s) for s in model_config.scales])
|
| 540 |
+
|
| 541 |
+
# V2 specific info
|
| 542 |
+
if isinstance(model_config, DavidBeansV2Config):
|
| 543 |
+
routing_info = f"""
|
| 544 |
+
## Wormhole Routing (V2)
|
| 545 |
+
| Parameter | Value |
|
| 546 |
+
|-----------|-------|
|
| 547 |
+
| Mode | {model_config.wormhole_mode} |
|
| 548 |
+
| Wormholes/Position | {model_config.num_wormholes} |
|
| 549 |
+
| Temperature | {model_config.wormhole_temperature} |
|
| 550 |
+
| Tiles | {model_config.num_tiles} |
|
| 551 |
+
| Tile Wormholes | {model_config.tile_wormholes} |
|
| 552 |
+
"""
|
| 553 |
+
else:
|
| 554 |
+
routing_info = """
|
| 555 |
+
## Routing (V1)
|
| 556 |
+
| Parameter | Value |
|
| 557 |
+
|-----------|-------|
|
| 558 |
+
| k_neighbors | {model_config.k_neighbors} |
|
| 559 |
+
| Cantor Weight | {model_config.cantor_weight} |
|
| 560 |
+
"""
|
| 561 |
+
|
| 562 |
+
return f"""# Run: {run_dir_name}
|
| 563 |
+
|
| 564 |
+
## Results
|
| 565 |
+
- **Best Accuracy**: {best_acc:.2f}%
|
| 566 |
+
- **Dataset**: {train_config.dataset}
|
| 567 |
+
- **Epochs**: {train_config.epochs}
|
| 568 |
+
- **Model Version**: V{train_config.model_version}
|
| 569 |
+
|
| 570 |
+
## Model Config
|
| 571 |
+
| Parameter | Value |
|
| 572 |
+
|-----------|-------|
|
| 573 |
+
| Dim | {model_config.dim} |
|
| 574 |
+
| Layers | {model_config.num_layers} |
|
| 575 |
+
| Heads | {model_config.num_heads} |
|
| 576 |
+
| Scales | [{scales_str}] |
|
| 577 |
+
{routing_info}
|
| 578 |
+
|
| 579 |
+
## Training Config
|
| 580 |
+
| Parameter | Value |
|
| 581 |
+
|-----------|-------|
|
| 582 |
+
| Learning Rate | {train_config.learning_rate} |
|
| 583 |
+
| Weight Decay | {train_config.weight_decay} |
|
| 584 |
+
| Batch Size | {train_config.batch_size} |
|
| 585 |
+
| CE Weight | {train_config.ce_weight} |
|
| 586 |
+
| Contrast Weight | {train_config.contrast_weight} |
|
| 587 |
+
|
| 588 |
+
## Key Findings Applied
|
| 589 |
+
- Routing learns from task pressure (no auxiliary routing losses)
|
| 590 |
+
- Gradients verified to flow through router
|
| 591 |
+
- Cross-contrastive aligns patch↔scale features
|
| 592 |
+
"""
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
def prepare_run_for_hub(
|
| 596 |
+
model: nn.Module,
|
| 597 |
+
model_config: Union[DavidBeansConfig, DavidBeansV2Config],
|
| 598 |
+
train_config: TrainingConfigV2,
|
| 599 |
+
best_acc: float,
|
| 600 |
+
output_dir: Path,
|
| 601 |
+
run_dir_name: str,
|
| 602 |
+
training_history: Optional[Dict] = None
|
| 603 |
+
) -> Path:
|
| 604 |
+
"""Prepare run files for upload to HuggingFace Hub."""
|
| 605 |
+
|
| 606 |
+
hub_dir = output_dir / "hub_upload"
|
| 607 |
+
run_hub_dir = hub_dir / "weights" / run_dir_name
|
| 608 |
+
run_hub_dir.mkdir(parents=True, exist_ok=True)
|
| 609 |
+
|
| 610 |
+
# Save best model weights
|
| 611 |
+
state_dict = {k: v.clone() for k, v in model.state_dict().items()}
|
| 612 |
+
|
| 613 |
+
if SAFETENSORS_AVAILABLE:
|
| 614 |
+
try:
|
| 615 |
+
save_safetensors(state_dict, run_hub_dir / "best.safetensors")
|
| 616 |
+
print(f" ✓ Saved best.safetensors")
|
| 617 |
+
except Exception as e:
|
| 618 |
+
print(f" [!] Safetensors failed ({e}), using pytorch format")
|
| 619 |
+
torch.save(state_dict, run_hub_dir / "best.pt")
|
| 620 |
+
else:
|
| 621 |
+
torch.save(state_dict, run_hub_dir / "best.pt")
|
| 622 |
+
|
| 623 |
+
# Save model config
|
| 624 |
+
config_dict = {
|
| 625 |
+
"architecture": f"DavidBeans_V{train_config.model_version}",
|
| 626 |
+
"model_type": "david_beans_v2" if train_config.model_version == 2 else "david_beans",
|
| 627 |
+
**model_config.__dict__
|
| 628 |
+
}
|
| 629 |
+
with open(run_hub_dir / "config.json", "w") as f:
|
| 630 |
+
json.dump(config_dict, f, indent=2, default=str)
|
| 631 |
+
|
| 632 |
+
# Save training config
|
| 633 |
+
with open(run_hub_dir / "training_config.json", "w") as f:
|
| 634 |
+
json.dump(train_config.to_dict(), f, indent=2, default=str)
|
| 635 |
+
|
| 636 |
+
# Generate README
|
| 637 |
+
run_readme = generate_run_readme(model_config, train_config, best_acc, run_dir_name)
|
| 638 |
+
with open(run_hub_dir / "README.md", "w") as f:
|
| 639 |
+
f.write(run_readme)
|
| 640 |
+
|
| 641 |
+
# Save training history
|
| 642 |
+
if training_history:
|
| 643 |
+
with open(run_hub_dir / "training_history.json", "w") as f:
|
| 644 |
+
json.dump(training_history, f, indent=2)
|
| 645 |
+
|
| 646 |
+
# Copy TensorBoard logs
|
| 647 |
+
tb_dir = output_dir / "tensorboard"
|
| 648 |
+
if tb_dir.exists():
|
| 649 |
+
hub_tb_dir = run_hub_dir / "tensorboard"
|
| 650 |
+
if hub_tb_dir.exists():
|
| 651 |
+
shutil.rmtree(hub_tb_dir)
|
| 652 |
+
shutil.copytree(tb_dir, hub_tb_dir)
|
| 653 |
+
|
| 654 |
+
return hub_dir
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
def push_run_to_hub(
|
| 658 |
+
hub_dir: Path,
|
| 659 |
+
repo_id: str,
|
| 660 |
+
run_dir_name: str,
|
| 661 |
+
private: bool = False,
|
| 662 |
+
commit_message: Optional[str] = None
|
| 663 |
+
) -> str:
|
| 664 |
+
"""Push run files to HuggingFace Hub."""
|
| 665 |
+
|
| 666 |
+
if not HF_HUB_AVAILABLE:
|
| 667 |
+
raise RuntimeError("huggingface_hub not installed")
|
| 668 |
+
|
| 669 |
+
api = HfApi()
|
| 670 |
+
|
| 671 |
+
try:
|
| 672 |
+
create_repo(repo_id, private=private, exist_ok=True)
|
| 673 |
+
except Exception as e:
|
| 674 |
+
print(f" [!] Repo creation note: {e}")
|
| 675 |
+
|
| 676 |
+
run_upload_dir = hub_dir / "weights" / run_dir_name
|
| 677 |
+
|
| 678 |
+
if commit_message is None:
|
| 679 |
+
commit_message = f"Update {run_dir_name} - {datetime.now().strftime('%Y-%m-%d %H:%M')}"
|
| 680 |
+
|
| 681 |
+
url = upload_folder(
|
| 682 |
+
folder_path=str(run_upload_dir),
|
| 683 |
+
repo_id=repo_id,
|
| 684 |
+
path_in_repo=f"weights/{run_dir_name}",
|
| 685 |
+
commit_message=commit_message
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
return url
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
# ============================================================================
|
| 692 |
+
# TRAINING LOOP V2
|
| 693 |
+
# ============================================================================
|
| 694 |
+
|
| 695 |
+
def train_epoch_v2(
|
| 696 |
+
model: nn.Module,
|
| 697 |
+
train_loader: DataLoader,
|
| 698 |
+
optimizer: torch.optim.Optimizer,
|
| 699 |
+
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
|
| 700 |
+
config: TrainingConfigV2,
|
| 701 |
+
epoch: int,
|
| 702 |
+
tracker: MetricsTracker,
|
| 703 |
+
routing_metrics: RoutingMetrics,
|
| 704 |
+
writer: Optional['SummaryWriter'] = None
|
| 705 |
+
) -> Dict[str, float]:
|
| 706 |
+
"""Train for one epoch with V2 routing metrics."""
|
| 707 |
+
|
| 708 |
+
model.train()
|
| 709 |
+
device = config.device
|
| 710 |
+
is_v2 = config.model_version == 2
|
| 711 |
+
|
| 712 |
+
total_loss = 0.0
|
| 713 |
+
total_correct = 0
|
| 714 |
+
total_samples = 0
|
| 715 |
+
global_step = epoch * len(train_loader)
|
| 716 |
+
|
| 717 |
+
routing_metrics.reset()
|
| 718 |
+
|
| 719 |
+
pbar = tqdm(train_loader, desc=f"Epoch {epoch + 1}", leave=True)
|
| 720 |
+
|
| 721 |
+
for batch_idx, (images, targets) in enumerate(pbar):
|
| 722 |
+
images = images.to(device, non_blocking=True)
|
| 723 |
+
targets = targets.to(device, non_blocking=True)
|
| 724 |
+
|
| 725 |
+
# Apply mixup/cutmix
|
| 726 |
+
use_mixup = config.use_augmentation and config.mixup_alpha > 0
|
| 727 |
+
use_cutmix = config.use_augmentation and config.cutmix_alpha > 0
|
| 728 |
+
|
| 729 |
+
mixed = False
|
| 730 |
+
if use_mixup or use_cutmix:
|
| 731 |
+
r = torch.rand(1).item()
|
| 732 |
+
if r < 0.5:
|
| 733 |
+
pass
|
| 734 |
+
elif r < 0.75 and use_mixup:
|
| 735 |
+
images, targets_a, targets_b, lam = mixup_data(images, targets, config.mixup_alpha)
|
| 736 |
+
mixed = True
|
| 737 |
+
elif use_cutmix:
|
| 738 |
+
images, targets_a, targets_b, lam = cutmix_data(images, targets, config.cutmix_alpha)
|
| 739 |
+
mixed = True
|
| 740 |
+
|
| 741 |
+
# Forward pass
|
| 742 |
+
if is_v2:
|
| 743 |
+
result = model(
|
| 744 |
+
images,
|
| 745 |
+
targets=targets,
|
| 746 |
+
return_loss=True,
|
| 747 |
+
return_routing=(batch_idx % 10 == 0) # Sample routing every 10 batches
|
| 748 |
+
)
|
| 749 |
+
else:
|
| 750 |
+
result = model(images, targets=targets, return_loss=True)
|
| 751 |
+
|
| 752 |
+
losses = result['losses']
|
| 753 |
+
|
| 754 |
+
# Handle mixup CE loss
|
| 755 |
+
if mixed:
|
| 756 |
+
logits = result['logits']
|
| 757 |
+
ce_loss = lam * F.cross_entropy(logits, targets_a, label_smoothing=config.label_smoothing) + \
|
| 758 |
+
(1 - lam) * F.cross_entropy(logits, targets_b, label_smoothing=config.label_smoothing)
|
| 759 |
+
losses['ce'] = ce_loss
|
| 760 |
+
|
| 761 |
+
# Compute total loss (NO auxiliary routing loss - key finding!)
|
| 762 |
+
loss = (
|
| 763 |
+
config.ce_weight * losses['ce'] +
|
| 764 |
+
config.contrast_weight * losses.get('contrast', torch.tensor(0.0, device=device))
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
# Add scale CE losses
|
| 768 |
+
for scale in model.config.scales:
|
| 769 |
+
scale_ce = losses.get(f'ce_{scale}', 0.0)
|
| 770 |
+
if isinstance(scale_ce, torch.Tensor):
|
| 771 |
+
loss = loss + 0.1 * scale_ce
|
| 772 |
+
|
| 773 |
+
# Backward pass
|
| 774 |
+
optimizer.zero_grad()
|
| 775 |
+
loss.backward()
|
| 776 |
+
|
| 777 |
+
# Track routing gradient norms (verify gradients flow!)
|
| 778 |
+
if is_v2:
|
| 779 |
+
routing_metrics.update_grad_norms(model)
|
| 780 |
+
|
| 781 |
+
if config.gradient_clip > 0:
|
| 782 |
+
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.gradient_clip)
|
| 783 |
+
else:
|
| 784 |
+
grad_norm = 0.0
|
| 785 |
+
|
| 786 |
+
optimizer.step()
|
| 787 |
+
|
| 788 |
+
if scheduler is not None and config.scheduler == "onecycle":
|
| 789 |
+
scheduler.step()
|
| 790 |
+
|
| 791 |
+
# Update routing metrics from forward pass
|
| 792 |
+
if is_v2 and result.get('routing'):
|
| 793 |
+
routing_metrics.update_from_routing_info(result['routing'], model)
|
| 794 |
+
|
| 795 |
+
# Compute accuracy
|
| 796 |
+
with torch.no_grad():
|
| 797 |
+
logits = result['logits']
|
| 798 |
+
preds = logits.argmax(dim=-1)
|
| 799 |
+
|
| 800 |
+
if mixed:
|
| 801 |
+
correct = (lam * (preds == targets_a).float() +
|
| 802 |
+
(1 - lam) * (preds == targets_b).float()).sum()
|
| 803 |
+
else:
|
| 804 |
+
correct = (preds == targets).sum()
|
| 805 |
+
|
| 806 |
+
total_correct += correct.item()
|
| 807 |
+
total_samples += targets.size(0)
|
| 808 |
+
total_loss += loss.item()
|
| 809 |
+
|
| 810 |
+
# Track metrics
|
| 811 |
+
def to_float(v):
|
| 812 |
+
return v.item() if isinstance(v, torch.Tensor) else float(v)
|
| 813 |
+
|
| 814 |
+
contrast_loss = to_float(losses.get('contrast', 0.0))
|
| 815 |
+
current_lr = optimizer.param_groups[0]['lr']
|
| 816 |
+
|
| 817 |
+
tracker.update(
|
| 818 |
+
loss=loss.item(),
|
| 819 |
+
ce=losses['ce'].item(),
|
| 820 |
+
contrast=contrast_loss,
|
| 821 |
+
lr=current_lr
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
# TensorBoard logging
|
| 825 |
+
if writer is not None and (batch_idx + 1) % config.log_interval == 0:
|
| 826 |
+
step = global_step + batch_idx
|
| 827 |
+
writer.add_scalar('train/loss_total', loss.item(), step)
|
| 828 |
+
writer.add_scalar('train/loss_ce', losses['ce'].item(), step)
|
| 829 |
+
writer.add_scalar('train/loss_contrast', contrast_loss, step)
|
| 830 |
+
writer.add_scalar('train/learning_rate', current_lr, step)
|
| 831 |
+
writer.add_scalar('train/grad_norm', to_float(grad_norm), step)
|
| 832 |
+
|
| 833 |
+
# Log routing metrics for V2
|
| 834 |
+
if is_v2 and config.log_routing:
|
| 835 |
+
routing_summary = routing_metrics.get_summary()
|
| 836 |
+
for k, v in routing_summary.items():
|
| 837 |
+
writer.add_scalar(f'routing/{k}', v, step)
|
| 838 |
+
|
| 839 |
+
# Progress bar
|
| 840 |
+
routing_summary = routing_metrics.get_summary()
|
| 841 |
+
postfix = {
|
| 842 |
+
'loss': f"{tracker.get_ema('loss'):.3f}",
|
| 843 |
+
'acc': f"{100.0 * total_correct / total_samples:.1f}%",
|
| 844 |
+
}
|
| 845 |
+
if is_v2 and 'grad_query' in routing_summary:
|
| 846 |
+
postfix['∇q'] = f"{routing_summary['grad_query']:.2f}"
|
| 847 |
+
if 'route_entropy' in routing_summary:
|
| 848 |
+
postfix['H'] = f"{routing_summary['route_entropy']:.2f}"
|
| 849 |
+
|
| 850 |
+
pbar.set_postfix(postfix)
|
| 851 |
+
|
| 852 |
+
if scheduler is not None and config.scheduler == "cosine":
|
| 853 |
+
scheduler.step()
|
| 854 |
+
|
| 855 |
+
return {
|
| 856 |
+
'loss': total_loss / len(train_loader),
|
| 857 |
+
'acc': 100.0 * total_correct / total_samples,
|
| 858 |
+
**routing_metrics.get_summary()
|
| 859 |
+
}
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
@torch.no_grad()
|
| 863 |
+
def evaluate_v2(
|
| 864 |
+
model: nn.Module,
|
| 865 |
+
test_loader: DataLoader,
|
| 866 |
+
config: TrainingConfigV2
|
| 867 |
+
) -> Dict[str, float]:
|
| 868 |
+
"""Evaluate on test set."""
|
| 869 |
+
|
| 870 |
+
model.eval()
|
| 871 |
+
device = config.device
|
| 872 |
+
|
| 873 |
+
total_loss = 0.0
|
| 874 |
+
total_correct = 0
|
| 875 |
+
total_samples = 0
|
| 876 |
+
scale_correct = {s: 0 for s in model.config.scales}
|
| 877 |
+
|
| 878 |
+
for images, targets in test_loader:
|
| 879 |
+
images = images.to(device, non_blocking=True)
|
| 880 |
+
targets = targets.to(device, non_blocking=True)
|
| 881 |
+
|
| 882 |
+
result = model(images, targets=targets, return_loss=True)
|
| 883 |
+
|
| 884 |
+
logits = result['logits']
|
| 885 |
+
losses = result['losses']
|
| 886 |
+
|
| 887 |
+
loss = losses['total']
|
| 888 |
+
preds = logits.argmax(dim=-1)
|
| 889 |
+
|
| 890 |
+
total_loss += loss.item() * targets.size(0)
|
| 891 |
+
total_correct += (preds == targets).sum().item()
|
| 892 |
+
total_samples += targets.size(0)
|
| 893 |
+
|
| 894 |
+
for i, scale in enumerate(model.config.scales):
|
| 895 |
+
scale_logits = result['scale_logits'][i]
|
| 896 |
+
scale_preds = scale_logits.argmax(dim=-1)
|
| 897 |
+
scale_correct[scale] += (scale_preds == targets).sum().item()
|
| 898 |
+
|
| 899 |
+
metrics = {
|
| 900 |
+
'loss': total_loss / total_samples,
|
| 901 |
+
'acc': 100.0 * total_correct / total_samples
|
| 902 |
+
}
|
| 903 |
+
|
| 904 |
+
for scale, correct in scale_correct.items():
|
| 905 |
+
metrics[f'acc_{scale}'] = 100.0 * correct / total_samples
|
| 906 |
+
|
| 907 |
+
return metrics
|
| 908 |
+
|
| 909 |
+
|
| 910 |
+
# ============================================================================
|
| 911 |
+
# MAIN TRAINING FUNCTION V2
|
| 912 |
+
# ============================================================================
|
| 913 |
+
|
| 914 |
+
def train_david_beans_v2(
|
| 915 |
+
model_config: Optional[Union[DavidBeansConfig, DavidBeansV2Config]] = None,
|
| 916 |
+
train_config: Optional[TrainingConfigV2] = None
|
| 917 |
+
):
|
| 918 |
+
"""Main training function for DavidBeans V1 or V2."""
|
| 919 |
+
|
| 920 |
+
print("=" * 70)
|
| 921 |
+
print(" DAVID-BEANS V2 TRAINING: Wormhole Routing")
|
| 922 |
+
print("=" * 70)
|
| 923 |
+
print()
|
| 924 |
+
print(" 🌀 WORMHOLES: Learned sparse routing")
|
| 925 |
+
print(" 💎 CRYSTALS: Multi-scale projection")
|
| 926 |
+
print()
|
| 927 |
+
print(" Key insight: When routing IS the task, routing learns structure")
|
| 928 |
+
print()
|
| 929 |
+
print("=" * 70)
|
| 930 |
+
|
| 931 |
+
if train_config is None:
|
| 932 |
+
train_config = TrainingConfigV2()
|
| 933 |
+
|
| 934 |
+
base_output_dir = Path(train_config.output_dir)
|
| 935 |
+
base_output_dir.mkdir(parents=True, exist_ok=True)
|
| 936 |
+
|
| 937 |
+
# =========================================================================
|
| 938 |
+
# FIXED: Proper checkpoint resolution
|
| 939 |
+
# =========================================================================
|
| 940 |
+
checkpoint_path = None
|
| 941 |
+
run_dir = None
|
| 942 |
+
run_dir_name = None
|
| 943 |
+
|
| 944 |
+
if train_config.resume_from:
|
| 945 |
+
resume_path = Path(train_config.resume_from)
|
| 946 |
+
|
| 947 |
+
# Case 1: Direct absolute/relative file path
|
| 948 |
+
if resume_path.is_file():
|
| 949 |
+
checkpoint_path = resume_path
|
| 950 |
+
run_dir = checkpoint_path.parent
|
| 951 |
+
run_dir_name = run_dir.name
|
| 952 |
+
print(f"\n📂 Found checkpoint file: {checkpoint_path.name}")
|
| 953 |
+
|
| 954 |
+
# Case 2: Directory path - find best/latest checkpoint inside
|
| 955 |
+
elif resume_path.is_dir():
|
| 956 |
+
checkpoint_path = find_latest_checkpoint(resume_path)
|
| 957 |
+
if checkpoint_path:
|
| 958 |
+
run_dir = resume_path
|
| 959 |
+
run_dir_name = resume_path.name
|
| 960 |
+
print(f"\n📂 Found checkpoint in dir: {checkpoint_path.name}")
|
| 961 |
+
|
| 962 |
+
# Case 3: Try as path relative to base_output_dir
|
| 963 |
+
else:
|
| 964 |
+
# Try as subdirectory name
|
| 965 |
+
possible_dir = base_output_dir / train_config.resume_from
|
| 966 |
+
if possible_dir.is_dir():
|
| 967 |
+
checkpoint_path = find_latest_checkpoint(possible_dir)
|
| 968 |
+
if checkpoint_path:
|
| 969 |
+
run_dir = possible_dir
|
| 970 |
+
run_dir_name = possible_dir.name
|
| 971 |
+
print(f"\n📂 Found checkpoint in: {run_dir_name}")
|
| 972 |
+
|
| 973 |
+
# Try as relative file path
|
| 974 |
+
if checkpoint_path is None:
|
| 975 |
+
possible_file = base_output_dir / train_config.resume_from
|
| 976 |
+
if possible_file.is_file():
|
| 977 |
+
checkpoint_path = possible_file
|
| 978 |
+
run_dir = checkpoint_path.parent
|
| 979 |
+
run_dir_name = run_dir.name
|
| 980 |
+
print(f"\n📂 Found checkpoint: {checkpoint_path.name}")
|
| 981 |
+
|
| 982 |
+
# Report if not found
|
| 983 |
+
if checkpoint_path is None:
|
| 984 |
+
print(f"\n [!] Could not find checkpoint: {train_config.resume_from}")
|
| 985 |
+
print(f" [!] Checked:")
|
| 986 |
+
print(f" - As file: {resume_path}")
|
| 987 |
+
print(f" - As dir: {resume_path}")
|
| 988 |
+
print(f" - Under {base_output_dir}")
|
| 989 |
+
print(f" [!] Starting fresh run instead")
|
| 990 |
+
else:
|
| 991 |
+
print(f" ✓ Will resume from: {checkpoint_path}")
|
| 992 |
+
|
| 993 |
+
# Create new run directory if not resuming
|
| 994 |
+
if run_dir is None:
|
| 995 |
+
run_number = train_config.run_number or get_next_run_number(base_output_dir)
|
| 996 |
+
run_dir_name = generate_run_dir_name(run_number, train_config.run_name, train_config.model_version)
|
| 997 |
+
run_dir = base_output_dir / run_dir_name
|
| 998 |
+
run_dir.mkdir(parents=True, exist_ok=True)
|
| 999 |
+
print(f"\n📁 New run: {run_dir_name}")
|
| 1000 |
+
else:
|
| 1001 |
+
print(f"\n📁 Resuming run: {run_dir_name}")
|
| 1002 |
+
|
| 1003 |
+
output_dir = run_dir
|
| 1004 |
+
|
| 1005 |
+
# =========================================================================
|
| 1006 |
+
# Model config - load from checkpoint if resuming, else use provided/default
|
| 1007 |
+
# =========================================================================
|
| 1008 |
+
if checkpoint_path and checkpoint_path.exists() and model_config is None:
|
| 1009 |
+
# Try to load config from checkpoint
|
| 1010 |
+
try:
|
| 1011 |
+
ckpt = torch.load(checkpoint_path, map_location='cpu')
|
| 1012 |
+
if 'model_config' in ckpt:
|
| 1013 |
+
saved_config = ckpt['model_config']
|
| 1014 |
+
print(f" ✓ Loading model config from checkpoint")
|
| 1015 |
+
if train_config.model_version == 2:
|
| 1016 |
+
model_config = DavidBeansV2Config(**saved_config)
|
| 1017 |
+
else:
|
| 1018 |
+
model_config = DavidBeansConfig(**saved_config)
|
| 1019 |
+
except Exception as e:
|
| 1020 |
+
print(f" [!] Could not load config from checkpoint: {e}")
|
| 1021 |
+
|
| 1022 |
+
# Create default config if still None
|
| 1023 |
+
if model_config is None:
|
| 1024 |
+
if train_config.model_version == 2:
|
| 1025 |
+
model_config = DavidBeansV2Config(
|
| 1026 |
+
image_size=train_config.image_size,
|
| 1027 |
+
patch_size=4,
|
| 1028 |
+
dim=512,
|
| 1029 |
+
num_layers=4,
|
| 1030 |
+
num_heads=8,
|
| 1031 |
+
num_wormholes=8,
|
| 1032 |
+
wormhole_temperature=0.1,
|
| 1033 |
+
wormhole_mode="hybrid",
|
| 1034 |
+
num_tiles=16,
|
| 1035 |
+
tile_wormholes=4,
|
| 1036 |
+
scales=[64, 128, 256, 384, 512],
|
| 1037 |
+
num_classes=100,
|
| 1038 |
+
contrast_weight=train_config.contrast_weight,
|
| 1039 |
+
dropout=0.1
|
| 1040 |
+
)
|
| 1041 |
+
else:
|
| 1042 |
+
model_config = DavidBeansConfig(
|
| 1043 |
+
image_size=train_config.image_size,
|
| 1044 |
+
patch_size=4,
|
| 1045 |
+
dim=512,
|
| 1046 |
+
num_layers=4,
|
| 1047 |
+
num_heads=8,
|
| 1048 |
+
num_experts=5,
|
| 1049 |
+
k_neighbors=16,
|
| 1050 |
+
cantor_weight=0.3,
|
| 1051 |
+
scales=[64, 128, 256, 384, 512],
|
| 1052 |
+
num_classes=100,
|
| 1053 |
+
dropout=0.1
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
device = train_config.device
|
| 1057 |
+
print(f"\nDevice: {device}")
|
| 1058 |
+
print(f"Model version: V{train_config.model_version}")
|
| 1059 |
+
|
| 1060 |
+
# Data
|
| 1061 |
+
print("\nLoading data...")
|
| 1062 |
+
train_loader, test_loader, num_classes = get_dataloaders(train_config)
|
| 1063 |
+
print(f" Dataset: {train_config.dataset}")
|
| 1064 |
+
print(f" Train: {len(train_loader.dataset)}, Test: {len(test_loader.dataset)}")
|
| 1065 |
+
print(f" Classes: {num_classes}")
|
| 1066 |
+
|
| 1067 |
+
model_config.num_classes = num_classes
|
| 1068 |
+
|
| 1069 |
+
# Model
|
| 1070 |
+
print("\nBuilding model...")
|
| 1071 |
+
if train_config.model_version == 2:
|
| 1072 |
+
model = DavidBeansV2(model_config)
|
| 1073 |
+
else:
|
| 1074 |
+
model = DavidBeans(model_config)
|
| 1075 |
+
|
| 1076 |
+
model = model.to(device)
|
| 1077 |
+
print(f"\n{model}")
|
| 1078 |
+
|
| 1079 |
+
num_params = sum(p.numel() for p in model.parameters())
|
| 1080 |
+
print(f"\nParameters: {num_params:,}")
|
| 1081 |
+
|
| 1082 |
+
# Optimizer
|
| 1083 |
+
print("\nSetting up optimizer...")
|
| 1084 |
+
|
| 1085 |
+
decay_params = []
|
| 1086 |
+
no_decay_params = []
|
| 1087 |
+
|
| 1088 |
+
for name, param in model.named_parameters():
|
| 1089 |
+
if not param.requires_grad:
|
| 1090 |
+
continue
|
| 1091 |
+
if 'bias' in name or 'norm' in name or 'embedding' in name:
|
| 1092 |
+
no_decay_params.append(param)
|
| 1093 |
+
else:
|
| 1094 |
+
decay_params.append(param)
|
| 1095 |
+
|
| 1096 |
+
optimizer = AdamW([
|
| 1097 |
+
{'params': decay_params, 'weight_decay': train_config.weight_decay},
|
| 1098 |
+
{'params': no_decay_params, 'weight_decay': 0.0}
|
| 1099 |
+
], lr=train_config.learning_rate, betas=train_config.betas)
|
| 1100 |
+
|
| 1101 |
+
if train_config.scheduler == "cosine":
|
| 1102 |
+
scheduler = CosineAnnealingLR(
|
| 1103 |
+
optimizer,
|
| 1104 |
+
T_max=train_config.epochs - train_config.warmup_epochs,
|
| 1105 |
+
eta_min=train_config.min_lr
|
| 1106 |
+
)
|
| 1107 |
+
elif train_config.scheduler == "onecycle":
|
| 1108 |
+
scheduler = OneCycleLR(
|
| 1109 |
+
optimizer,
|
| 1110 |
+
max_lr=train_config.learning_rate,
|
| 1111 |
+
epochs=train_config.epochs,
|
| 1112 |
+
steps_per_epoch=len(train_loader),
|
| 1113 |
+
pct_start=train_config.warmup_epochs / train_config.epochs
|
| 1114 |
+
)
|
| 1115 |
+
else:
|
| 1116 |
+
scheduler = None
|
| 1117 |
+
|
| 1118 |
+
print(f" Optimizer: AdamW (lr={train_config.learning_rate}, wd={train_config.weight_decay})")
|
| 1119 |
+
print(f" Scheduler: {train_config.scheduler}")
|
| 1120 |
+
|
| 1121 |
+
tracker = MetricsTracker()
|
| 1122 |
+
routing_metrics = RoutingMetrics()
|
| 1123 |
+
best_acc = 0.0
|
| 1124 |
+
start_epoch = 0
|
| 1125 |
+
|
| 1126 |
+
# =========================================================================
|
| 1127 |
+
# Load checkpoint weights and optimizer state
|
| 1128 |
+
# =========================================================================
|
| 1129 |
+
if checkpoint_path and checkpoint_path.exists():
|
| 1130 |
+
start_epoch, best_acc = load_checkpoint(checkpoint_path, model, optimizer, device)
|
| 1131 |
+
|
| 1132 |
+
# Advance scheduler to correct position
|
| 1133 |
+
if scheduler is not None and train_config.scheduler == "cosine":
|
| 1134 |
+
for _ in range(start_epoch):
|
| 1135 |
+
scheduler.step()
|
| 1136 |
+
print(f" ✓ Advanced scheduler to epoch {start_epoch}")
|
| 1137 |
+
|
| 1138 |
+
# TensorBoard
|
| 1139 |
+
writer = None
|
| 1140 |
+
if train_config.use_tensorboard and TENSORBOARD_AVAILABLE:
|
| 1141 |
+
tb_dir = output_dir / "tensorboard"
|
| 1142 |
+
tb_dir.mkdir(parents=True, exist_ok=True)
|
| 1143 |
+
writer = SummaryWriter(log_dir=str(tb_dir))
|
| 1144 |
+
print(f" TensorBoard: {tb_dir}")
|
| 1145 |
+
|
| 1146 |
+
# Save configs
|
| 1147 |
+
with open(output_dir / "config.json", "w") as f:
|
| 1148 |
+
json.dump({**model_config.__dict__, "architecture": f"DavidBeans_V{train_config.model_version}"},
|
| 1149 |
+
f, indent=2, default=str)
|
| 1150 |
+
with open(output_dir / "training_config.json", "w") as f:
|
| 1151 |
+
json.dump(train_config.to_dict(), f, indent=2, default=str)
|
| 1152 |
+
|
| 1153 |
+
# Training loop
|
| 1154 |
+
print("\n" + "=" * 70)
|
| 1155 |
+
print(" TRAINING")
|
| 1156 |
+
print("=" * 70)
|
| 1157 |
+
|
| 1158 |
+
for epoch in range(start_epoch, train_config.epochs):
|
| 1159 |
+
epoch_start = time.time()
|
| 1160 |
+
|
| 1161 |
+
# Warmup
|
| 1162 |
+
if epoch < train_config.warmup_epochs and train_config.scheduler == "cosine":
|
| 1163 |
+
warmup_lr = train_config.learning_rate * (epoch + 1) / train_config.warmup_epochs
|
| 1164 |
+
for param_group in optimizer.param_groups:
|
| 1165 |
+
param_group['lr'] = warmup_lr
|
| 1166 |
+
|
| 1167 |
+
train_metrics = train_epoch_v2(
|
| 1168 |
+
model, train_loader, optimizer, scheduler,
|
| 1169 |
+
train_config, epoch, tracker, routing_metrics, writer
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
test_metrics = evaluate_v2(model, test_loader, train_config)
|
| 1173 |
+
|
| 1174 |
+
epoch_time = time.time() - epoch_start
|
| 1175 |
+
|
| 1176 |
+
# TensorBoard
|
| 1177 |
+
if writer is not None:
|
| 1178 |
+
writer.add_scalar('epoch/train_loss', train_metrics['loss'], epoch)
|
| 1179 |
+
writer.add_scalar('epoch/train_acc', train_metrics['acc'], epoch)
|
| 1180 |
+
writer.add_scalar('epoch/test_loss', test_metrics['loss'], epoch)
|
| 1181 |
+
writer.add_scalar('epoch/test_acc', test_metrics['acc'], epoch)
|
| 1182 |
+
|
| 1183 |
+
for scale in model.config.scales:
|
| 1184 |
+
writer.add_scalar(f'scales/acc_{scale}', test_metrics[f'acc_{scale}'], epoch)
|
| 1185 |
+
|
| 1186 |
+
# Print summary - show ALL scales
|
| 1187 |
+
scale_accs = " | ".join([f"{s}:{test_metrics[f'acc_{s}']:.1f}%" for s in model.config.scales])
|
| 1188 |
+
star = "★" if test_metrics['acc'] > best_acc else ""
|
| 1189 |
+
|
| 1190 |
+
routing_info = ""
|
| 1191 |
+
if train_config.model_version == 2 and 'grad_query' in train_metrics:
|
| 1192 |
+
routing_info = f" | ∇q:{train_metrics.get('grad_query', 0):.2f}"
|
| 1193 |
+
|
| 1194 |
+
print(f" → Train: {train_metrics['acc']:.1f}% | Test: {test_metrics['acc']:.1f}% | "
|
| 1195 |
+
f"[{scale_accs}]{routing_info} | {epoch_time:.0f}s {star}")
|
| 1196 |
+
|
| 1197 |
+
# Save best model
|
| 1198 |
+
if test_metrics['acc'] > best_acc:
|
| 1199 |
+
best_acc = test_metrics['acc']
|
| 1200 |
+
torch.save({
|
| 1201 |
+
'epoch': epoch,
|
| 1202 |
+
'model_state_dict': model.state_dict(),
|
| 1203 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 1204 |
+
'best_acc': best_acc,
|
| 1205 |
+
'model_config': model_config.__dict__,
|
| 1206 |
+
'train_config': train_config.to_dict()
|
| 1207 |
+
}, output_dir / "best_model.pt")
|
| 1208 |
+
|
| 1209 |
+
# Periodic checkpoint
|
| 1210 |
+
if (epoch + 1) % train_config.save_interval == 0:
|
| 1211 |
+
torch.save({
|
| 1212 |
+
'epoch': epoch,
|
| 1213 |
+
'model_state_dict': model.state_dict(),
|
| 1214 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 1215 |
+
'best_acc': best_acc,
|
| 1216 |
+
'model_config': model_config.__dict__,
|
| 1217 |
+
'train_config': train_config.to_dict()
|
| 1218 |
+
}, output_dir / f"checkpoint_epoch_{epoch + 1}.pt")
|
| 1219 |
+
|
| 1220 |
+
# Upload to hub
|
| 1221 |
+
if train_config.push_to_hub and HF_HUB_AVAILABLE:
|
| 1222 |
+
try:
|
| 1223 |
+
hub_dir = prepare_run_for_hub(
|
| 1224 |
+
model=model,
|
| 1225 |
+
model_config=model_config,
|
| 1226 |
+
train_config=train_config,
|
| 1227 |
+
best_acc=best_acc,
|
| 1228 |
+
output_dir=output_dir,
|
| 1229 |
+
run_dir_name=run_dir_name,
|
| 1230 |
+
training_history=tracker.get_history()
|
| 1231 |
+
)
|
| 1232 |
+
push_run_to_hub(
|
| 1233 |
+
hub_dir=hub_dir,
|
| 1234 |
+
repo_id=train_config.hub_repo_id,
|
| 1235 |
+
run_dir_name=run_dir_name,
|
| 1236 |
+
commit_message=f"Epoch {epoch + 1} - {best_acc:.2f}% acc"
|
| 1237 |
+
)
|
| 1238 |
+
print(f" 📤 Uploaded to hub")
|
| 1239 |
+
except Exception as e:
|
| 1240 |
+
print(f" [!] Hub upload failed: {e}")
|
| 1241 |
+
|
| 1242 |
+
tracker.end_epoch()
|
| 1243 |
+
|
| 1244 |
+
# Final summary
|
| 1245 |
+
print("\n" + "=" * 70)
|
| 1246 |
+
print(" TRAINING COMPLETE")
|
| 1247 |
+
print("=" * 70)
|
| 1248 |
+
print(f"\n Best Test Accuracy: {best_acc:.2f}%")
|
| 1249 |
+
print(f" Model saved to: {output_dir / 'best_model.pt'}")
|
| 1250 |
+
|
| 1251 |
+
if writer is not None:
|
| 1252 |
+
writer.close()
|
| 1253 |
+
|
| 1254 |
+
return model, best_acc
|
| 1255 |
+
|
| 1256 |
+
|
| 1257 |
+
# ============================================================================
|
| 1258 |
+
# PRESETS
|
| 1259 |
+
# ============================================================================
|
| 1260 |
+
|
| 1261 |
+
def train_cifar100_v2_wormhole(
|
| 1262 |
+
run_name: str = "wormhole_base",
|
| 1263 |
+
push_to_hub: bool = False,
|
| 1264 |
+
resume: bool = False
|
| 1265 |
+
):
|
| 1266 |
+
"""CIFAR-100 with V2 wormhole routing."""
|
| 1267 |
+
|
| 1268 |
+
model_config = DavidBeansV2Config(
|
| 1269 |
+
image_size=32,
|
| 1270 |
+
patch_size=2,
|
| 1271 |
+
dim=512,
|
| 1272 |
+
num_layers=4,
|
| 1273 |
+
num_heads=16,
|
| 1274 |
+
# Wormhole routing parameters
|
| 1275 |
+
num_wormholes=16,
|
| 1276 |
+
wormhole_temperature=0.1,
|
| 1277 |
+
wormhole_mode="hybrid",
|
| 1278 |
+
# Tessellation parameters
|
| 1279 |
+
num_tiles=16,
|
| 1280 |
+
tile_wormholes=4,
|
| 1281 |
+
# Crystal head
|
| 1282 |
+
scales=[64, 128, 256, 512, 1024],
|
| 1283 |
+
num_classes=100,
|
| 1284 |
+
contrast_temperature=0.07,
|
| 1285 |
+
contrast_weight=0.5,
|
| 1286 |
+
dropout=0.1
|
| 1287 |
+
)
|
| 1288 |
+
|
| 1289 |
+
train_config = TrainingConfigV2(
|
| 1290 |
+
run_name=run_name,
|
| 1291 |
+
model_version=2,
|
| 1292 |
+
dataset="cifar100",
|
| 1293 |
+
epochs=300,
|
| 1294 |
+
batch_size=512,
|
| 1295 |
+
learning_rate=3e-4,
|
| 1296 |
+
weight_decay=0.05,
|
| 1297 |
+
warmup_epochs=15,
|
| 1298 |
+
# Loss weights (no auxiliary routing loss!)
|
| 1299 |
+
ce_weight=1.0,
|
| 1300 |
+
contrast_weight=0.5,
|
| 1301 |
+
# Augmentation
|
| 1302 |
+
label_smoothing=0.1,
|
| 1303 |
+
mixup_alpha=0.2,
|
| 1304 |
+
cutmix_alpha=1.0,
|
| 1305 |
+
# Output
|
| 1306 |
+
output_dir="./checkpoints/cifar100_v2",
|
| 1307 |
+
resume_from=None, #"./checkpoints/cifar100_v2/run_002_v2_16patch_4tilewormholes_d768_4layer_20251130_045437/best_model.pt",
|
| 1308 |
+
# Hub
|
| 1309 |
+
push_to_hub=push_to_hub,
|
| 1310 |
+
hub_repo_id="AbstractPhil/geovit-david-beans",
|
| 1311 |
+
# Routing logging
|
| 1312 |
+
log_routing=True
|
| 1313 |
+
)
|
| 1314 |
+
|
| 1315 |
+
return train_david_beans_v2(model_config, train_config)
|
| 1316 |
+
|
| 1317 |
+
|
| 1318 |
+
def train_cifar100_v1_baseline(
|
| 1319 |
+
run_name: str = "v1_baseline",
|
| 1320 |
+
push_to_hub: bool = False,
|
| 1321 |
+
resume: bool = False
|
| 1322 |
+
):
|
| 1323 |
+
"""CIFAR-100 with V1 (fixed Cantor routing) for comparison."""
|
| 1324 |
+
|
| 1325 |
+
model_config = DavidBeansConfig(
|
| 1326 |
+
image_size=32,
|
| 1327 |
+
patch_size=4,
|
| 1328 |
+
dim=512,
|
| 1329 |
+
num_layers=4,
|
| 1330 |
+
num_heads=8,
|
| 1331 |
+
num_experts=5,
|
| 1332 |
+
k_neighbors=16,
|
| 1333 |
+
cantor_weight=0.3,
|
| 1334 |
+
scales=[64, 128, 256, 384, 512],
|
| 1335 |
+
num_classes=100,
|
| 1336 |
+
dropout=0.1
|
| 1337 |
+
)
|
| 1338 |
+
|
| 1339 |
+
train_config = TrainingConfigV2(
|
| 1340 |
+
run_name=run_name,
|
| 1341 |
+
model_version=1,
|
| 1342 |
+
dataset="cifar100",
|
| 1343 |
+
epochs=200,
|
| 1344 |
+
batch_size=128,
|
| 1345 |
+
learning_rate=3e-4,
|
| 1346 |
+
weight_decay=0.05,
|
| 1347 |
+
warmup_epochs=10,
|
| 1348 |
+
ce_weight=1.0,
|
| 1349 |
+
contrast_weight=0.5,
|
| 1350 |
+
label_smoothing=0.1,
|
| 1351 |
+
mixup_alpha=0.2,
|
| 1352 |
+
cutmix_alpha=1.0,
|
| 1353 |
+
output_dir="./checkpoints/cifar100_v1",
|
| 1354 |
+
resume_from="latest" if resume else None,
|
| 1355 |
+
push_to_hub=push_to_hub,
|
| 1356 |
+
hub_repo_id="AbstractPhil/geovit-david-beans",
|
| 1357 |
+
log_routing=False
|
| 1358 |
+
)
|
| 1359 |
+
|
| 1360 |
+
return train_david_beans_v2(model_config, train_config)
|
| 1361 |
+
|
| 1362 |
+
|
| 1363 |
+
# ============================================================================
|
| 1364 |
+
# MAIN
|
| 1365 |
+
# ============================================================================
|
| 1366 |
+
|
| 1367 |
+
if __name__ == "__main__":
|
| 1368 |
+
|
| 1369 |
+
# =====================================================
|
| 1370 |
+
# CONFIGURATION
|
| 1371 |
+
# =====================================================
|
| 1372 |
+
|
| 1373 |
+
PRESET = "v2_wormhole" # "v1_baseline", "v2_wormhole", "test"
|
| 1374 |
+
RESUME = False
|
| 1375 |
+
RUN_NAME = "5scale_2x2patch_4tilewormholes_d512_4layer"
|
| 1376 |
+
PUSH_TO_HUB = True
|
| 1377 |
+
|
| 1378 |
+
# =====================================================
|
| 1379 |
+
# RUN
|
| 1380 |
+
# =====================================================
|
| 1381 |
+
|
| 1382 |
+
if PRESET == "test":
|
| 1383 |
+
print("🧪 Quick test...")
|
| 1384 |
+
model_config = DavidBeansV2Config(
|
| 1385 |
+
image_size=32, patch_size=4, dim=128, num_layers=2,
|
| 1386 |
+
num_heads=4, num_wormholes=4, num_tiles=8,
|
| 1387 |
+
scales=[32, 64, 128], num_classes=10
|
| 1388 |
+
)
|
| 1389 |
+
train_config = TrainingConfigV2(
|
| 1390 |
+
run_name="test", model_version=2,
|
| 1391 |
+
epochs=2, batch_size=32,
|
| 1392 |
+
use_augmentation=False, mixup_alpha=0.0, cutmix_alpha=0.0
|
| 1393 |
+
)
|
| 1394 |
+
model, acc = train_david_beans_v2(model_config, train_config)
|
| 1395 |
+
|
| 1396 |
+
elif PRESET == "v1_baseline":
|
| 1397 |
+
print("🫘💎 Training DavidBeans V1 (Cantor routing)...")
|
| 1398 |
+
model, acc = train_cifar100_v1_baseline(
|
| 1399 |
+
run_name=RUN_NAME,
|
| 1400 |
+
push_to_hub=PUSH_TO_HUB,
|
| 1401 |
+
resume=RESUME
|
| 1402 |
+
)
|
| 1403 |
+
|
| 1404 |
+
elif PRESET == "v2_wormhole":
|
| 1405 |
+
print("💎 Training DavidBeans V2 (Wormhole routing)...")
|
| 1406 |
+
model, acc = train_cifar100_v2_wormhole(
|
| 1407 |
+
run_name=RUN_NAME,
|
| 1408 |
+
push_to_hub=PUSH_TO_HUB,
|
| 1409 |
+
resume=RESUME
|
| 1410 |
+
)
|
| 1411 |
+
|
| 1412 |
+
else:
|
| 1413 |
+
raise ValueError(f"Unknown preset: {PRESET}")
|
| 1414 |
+
|
| 1415 |
+
print(f"\n🎉 Done! Best accuracy: {acc:.2f}%")
|