Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,638 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- medical
|
| 5 |
+
- code
|
| 6 |
+
- math
|
| 7 |
+
- reasoning
|
| 8 |
+
- general
|
| 9 |
+
datasets:
|
| 10 |
+
- Raderspace/MATH_qCoT_LLMquery_questionasquery_lexicalquery
|
| 11 |
+
- reasonir/reasonir-data
|
| 12 |
+
- truehealth/medqa
|
| 13 |
+
- AQ-MedAI/PRGB-ZH
|
| 14 |
+
metrics:
|
| 15 |
+
- accuracy
|
| 16 |
+
- recall
|
| 17 |
+
base_model:
|
| 18 |
+
- Qwen/Qwen3-Embedding-4B
|
| 19 |
+
pipeline_tag: text-ranking
|
| 20 |
+
language:
|
| 21 |
+
- zh
|
| 22 |
+
- en
|
| 23 |
+
library_name: transformers
|
| 24 |
+
---
|
| 25 |
+
# Diver-Retriever-4B-1020
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## HighLights
|
| 29 |
+
The Diver Retriever 4B model is a reasoning-intensive model designed to tackle the challenge of reasonIR and rader.
|
| 30 |
+
We combined data from the fields of mathematics, coding, and healthcare.
|
| 31 |
+
At the same time, we made precise matching in terms of the difficulty level of the samples, and uniquely
|
| 32 |
+
constructed negative samples corresponding to each field. Therefore, this model performs very well on the Bright LeaderBoard
|
| 33 |
+
as well as the Mteb-Medical Benchmark.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
### Model Description
|
| 38 |
+
|
| 39 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
- **Model type:** Text Embedding
|
| 43 |
+
- **Language(s) (NLP):** Bilingual (Chinese & English)
|
| 44 |
+
- **Context Length:** 40k
|
| 45 |
+
- **Number of Paramaters:** 4B
|
| 46 |
+
|
| 47 |
+
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our GitHub (https://github.com/AQ-MedAI/Diver).
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
| **Model** | **#Total Params** | **Context Length** | **Download** | **BRIGHT** |
|
| 52 |
+
| :------------------: | :---------------: | :----------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------: |
|
| 53 |
+
| DIVER-Retriever-4B-1020 | 4B | 40K | [🤗 HuggingFace]https://huggingface.co/AQ-MedAI/Diver-Retriever-4B-1020 <br>[🤖 ModelScope]https://www.modelscope.cn/models/AQ-MedAI/Diver-Retriever-4B-1020 | **31.9** |
|
| 54 |
+
| DIVER-Retriever-4B | 4B | 40K | [🤗 HuggingFace]https://huggingface.co/AQ-MedAI/Diver-Retriever-4B <br>[🤖 ModelScope]https://www.modelscope.cn/models/AQ-MedAI/Diver-Retriever-4B | **28.9** |
|
| 55 |
+
| DIVER-Retriever-1.7B | 1.7B | 40K | [🤗 HuggingFace]https://huggingface.co/AQ-MedAI/Diver-Retriever-1.7B <br>[🤖 ModelScope]https://www.modelscope.cn/models/AQ-MedAI/Diver-Retriever-1.7B | **27.3** |
|
| 56 |
+
| DIVER-Retriever-0.6B | 0.6B | 32K | [🤗 HuggingFace]https://huggingface.co/AQ-MedAI/Diver-Retriever-0.6B <br>[🤖 ModelScope]https://www.modelscope.cn/models/AQ-MedAI/Diver-Retriever-0.6B | **25.2** |
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
## Evaluation
|
| 60 |
+
|
| 61 |
+
<table>
|
| 62 |
+
<thead>
|
| 63 |
+
<tr>
|
| 64 |
+
<th>Method</th>
|
| 65 |
+
<th style="text-align:right">Avg.</th>
|
| 66 |
+
<th style="text-align:right">Bio.</th>
|
| 67 |
+
<th style="text-align:right">Earth.</th>
|
| 68 |
+
<th style="text-align:right">Econ.</th>
|
| 69 |
+
<th style="text-align:right">Psy.</th>
|
| 70 |
+
<th style="text-align:right">Rob.</th>
|
| 71 |
+
<th style="text-align:right">Stack.</th>
|
| 72 |
+
<th style="text-align:right">Sus.</th>
|
| 73 |
+
<th style="text-align:right">Leet.</th>
|
| 74 |
+
<th style="text-align:right">Pony</th>
|
| 75 |
+
<th style="text-align:right">AoPS</th>
|
| 76 |
+
<th style="text-align:right">TheoQ.</th>
|
| 77 |
+
<th style="text-align:right">TheoT.</th>
|
| 78 |
+
</tr>
|
| 79 |
+
</thead>
|
| 80 |
+
<tbody>
|
| 81 |
+
<tr>
|
| 82 |
+
<td colspan=12 style="text-align:center"><strong>Evaluate Retriever with Original Query</strong></td>
|
| 83 |
+
</tr>
|
| 84 |
+
<tr>
|
| 85 |
+
<td>BM25</td>
|
| 86 |
+
<td style="text-align:right">14.5</td>
|
| 87 |
+
<td style="text-align:right">18.9</td>
|
| 88 |
+
<td style="text-align:right">27.2</td>
|
| 89 |
+
<td style="text-align:right">14.9</td>
|
| 90 |
+
<td style="text-align:right">12.5</td>
|
| 91 |
+
<td style="text-align:right">13.6</td>
|
| 92 |
+
<td style="text-align:right">18.4</td>
|
| 93 |
+
<td style="text-align:right">15.0</td>
|
| 94 |
+
<td style="text-align:right">24.4</td>
|
| 95 |
+
<td style="text-align:right">7.9</td>
|
| 96 |
+
<td style="text-align:right">6.2</td>
|
| 97 |
+
<td style="text-align:right">10.4</td>
|
| 98 |
+
<td style="text-align:right">4.9</td>
|
| 99 |
+
</tr>
|
| 100 |
+
<tr>
|
| 101 |
+
<td>SBERT</td>
|
| 102 |
+
<td style="text-align:right">14.9</td>
|
| 103 |
+
<td style="text-align:right">15.1</td>
|
| 104 |
+
<td style="text-align:right">20.4</td>
|
| 105 |
+
<td style="text-align:right">16.6</td>
|
| 106 |
+
<td style="text-align:right">22.7</td>
|
| 107 |
+
<td style="text-align:right">8.2</td>
|
| 108 |
+
<td style="text-align:right">11.0</td>
|
| 109 |
+
<td style="text-align:right">15.3</td>
|
| 110 |
+
<td style="text-align:right">26.4</td>
|
| 111 |
+
<td style="text-align:right">7.0</td>
|
| 112 |
+
<td style="text-align:right">5.3</td>
|
| 113 |
+
<td style="text-align:right">20.0</td>
|
| 114 |
+
<td style="text-align:right">10.8</td>
|
| 115 |
+
</tr>
|
| 116 |
+
<tr>
|
| 117 |
+
<td>gte-Qwen1.5-7B</td>
|
| 118 |
+
<td style="text-align:right">22.5</td>
|
| 119 |
+
<td style="text-align:right">30.6</td>
|
| 120 |
+
<td style="text-align:right">36.4</td>
|
| 121 |
+
<td style="text-align:right">17.8</td>
|
| 122 |
+
<td style="text-align:right">24.6</td>
|
| 123 |
+
<td style="text-align:right">13.2</td>
|
| 124 |
+
<td style="text-align:right">22.2</td>
|
| 125 |
+
<td style="text-align:right">14.8</td>
|
| 126 |
+
<td style="text-align:right">25.5</td>
|
| 127 |
+
<td style="text-align:right">9.9</td>
|
| 128 |
+
<td style="text-align:right">14.4</td>
|
| 129 |
+
<td style="text-align:right">27.8</td>
|
| 130 |
+
<td style="text-align:right">32.9</td>
|
| 131 |
+
</tr>
|
| 132 |
+
<tr>
|
| 133 |
+
<td>Qwen3-4B</td>
|
| 134 |
+
<td style="text-align:right">5.6</td>
|
| 135 |
+
<td style="text-align:right">3.5</td>
|
| 136 |
+
<td style="text-align:right">8.0</td>
|
| 137 |
+
<td style="text-align:right">2.3</td>
|
| 138 |
+
<td style="text-align:right">2.0</td>
|
| 139 |
+
<td style="text-align:right">1.6</td>
|
| 140 |
+
<td style="text-align:right">1.0</td>
|
| 141 |
+
<td style="text-align:right">4.4</td>
|
| 142 |
+
<td style="text-align:right">2.1</td>
|
| 143 |
+
<td style="text-align:right">0.1</td>
|
| 144 |
+
<td style="text-align:right">4.9</td>
|
| 145 |
+
<td style="text-align:right">18.0</td>
|
| 146 |
+
<td style="text-align:right">19.2</td>
|
| 147 |
+
</tr>
|
| 148 |
+
<tr>
|
| 149 |
+
<td>OpenAI</td>
|
| 150 |
+
<td style="text-align:right">17.9</td>
|
| 151 |
+
<td style="text-align:right">23.3</td>
|
| 152 |
+
<td style="text-align:right">26.7</td>
|
| 153 |
+
<td style="text-align:right">19.5</td>
|
| 154 |
+
<td style="text-align:right">27.6</td>
|
| 155 |
+
<td style="text-align:right">12.8</td>
|
| 156 |
+
<td style="text-align:right">14.3</td>
|
| 157 |
+
<td style="text-align:right">20.5</td>
|
| 158 |
+
<td style="text-align:right">23.6</td>
|
| 159 |
+
<td style="text-align:right">2.4</td>
|
| 160 |
+
<td style="text-align:right">8.5</td>
|
| 161 |
+
<td style="text-align:right">23.5</td>
|
| 162 |
+
<td style="text-align:right">11.7</td>
|
| 163 |
+
</tr>
|
| 164 |
+
<tr>
|
| 165 |
+
<td>Google</td>
|
| 166 |
+
<td style="text-align:right">20.0</td>
|
| 167 |
+
<td style="text-align:right">22.7</td>
|
| 168 |
+
<td style="text-align:right">34.8</td>
|
| 169 |
+
<td style="text-align:right">19.6</td>
|
| 170 |
+
<td style="text-align:right">27.8</td>
|
| 171 |
+
<td style="text-align:right">15.7</td>
|
| 172 |
+
<td style="text-align:right">20.1</td>
|
| 173 |
+
<td style="text-align:right">17.1</td>
|
| 174 |
+
<td style="text-align:right">29.6</td>
|
| 175 |
+
<td style="text-align:right">3.6</td>
|
| 176 |
+
<td style="text-align:right">9.3</td>
|
| 177 |
+
<td style="text-align:right">23.8</td>
|
| 178 |
+
<td style="text-align:right">15.9</td>
|
| 179 |
+
</tr>
|
| 180 |
+
<tr>
|
| 181 |
+
<td>ReasonIR-8B</td>
|
| 182 |
+
<td style="text-align:right">24.4</td>
|
| 183 |
+
<td style="text-align:right">26.2</td>
|
| 184 |
+
<td style="text-align:right">31.4</td>
|
| 185 |
+
<td style="text-align:right">23.3</td>
|
| 186 |
+
<td style="text-align:right">30.0</td>
|
| 187 |
+
<td style="text-align:right">18.0</td>
|
| 188 |
+
<td style="text-align:right"><strong>23.9</strong></td>
|
| 189 |
+
<td style="text-align:right">20.5</td>
|
| 190 |
+
<td style="text-align:right">35.0</td>
|
| 191 |
+
<td style="text-align:right">10.5</td>
|
| 192 |
+
<td style="text-align:right"><strong>14.7</strong></td>
|
| 193 |
+
<td style="text-align:right">31.9</td>
|
| 194 |
+
<td style="text-align:right">27.2</td>
|
| 195 |
+
</tr>
|
| 196 |
+
<tr>
|
| 197 |
+
<td>RaDeR-7B</td>
|
| 198 |
+
<td style="text-align:right">25.5</td>
|
| 199 |
+
<td style="text-align:right">34.6</td>
|
| 200 |
+
<td style="text-align:right">38.9</td>
|
| 201 |
+
<td style="text-align:right">22.1</td>
|
| 202 |
+
<td style="text-align:right">33.0</td>
|
| 203 |
+
<td style="text-align:right">14.8</td>
|
| 204 |
+
<td style="text-align:right">22.5</td>
|
| 205 |
+
<td style="text-align:right">23.7</td>
|
| 206 |
+
<td style="text-align:right">37.3</td>
|
| 207 |
+
<td style="text-align:right">5.0</td>
|
| 208 |
+
<td style="text-align:right">10.2</td>
|
| 209 |
+
<td style="text-align:right">28.4</td>
|
| 210 |
+
<td style="text-align:right">35.1</td>
|
| 211 |
+
</tr>
|
| 212 |
+
<tr>
|
| 213 |
+
<td>Seed1.5-Embedding</td>
|
| 214 |
+
<td style="text-align:right">27.2</td>
|
| 215 |
+
<td style="text-align:right">34.8</td>
|
| 216 |
+
<td style="text-align:right"><strong>46.9</strong></td>
|
| 217 |
+
<td style="text-align:right"><strong>23.4</strong></td>
|
| 218 |
+
<td style="text-align:right">31.6</td>
|
| 219 |
+
<td style="text-align:right">19.1</td>
|
| 220 |
+
<td style="text-align:right">25.4</td>
|
| 221 |
+
<td style="text-align:right">21.0</td>
|
| 222 |
+
<td style="text-align:right"><strong>43.2</strong></td>
|
| 223 |
+
<td style="text-align:right">4.9</td>
|
| 224 |
+
<td style="text-align:right">12.2</td>
|
| 225 |
+
<td style="text-align:right">33.3</td>
|
| 226 |
+
<td style="text-align:right">30.5</td>
|
| 227 |
+
</tr>
|
| 228 |
+
<tr>
|
| 229 |
+
<td>DIVER-Retriever</td>
|
| 230 |
+
<td style="text-align:right"><strong>28.9</strong></td>
|
| 231 |
+
<td style="text-align:right"><strong>41.8</strong></td>
|
| 232 |
+
<td style="text-align:right">43.7</td>
|
| 233 |
+
<td style="text-align:right">21.7</td>
|
| 234 |
+
<td style="text-align:right"><strong>35.3</strong></td>
|
| 235 |
+
<td style="text-align:right"><strong>21.0</strong></td>
|
| 236 |
+
<td style="text-align:right">21.2</td>
|
| 237 |
+
<td style="text-align:right"><strong>25.1</strong></td>
|
| 238 |
+
<td style="text-align:right">37.6</td>
|
| 239 |
+
<td style="text-align:right"><strong>13.2</strong></td>
|
| 240 |
+
<td style="text-align:right">10.7</td>
|
| 241 |
+
<td style="text-align:right"><strong>38.4</strong></td>
|
| 242 |
+
<td style="text-align:right"><strong>37.3</strong></td>
|
| 243 |
+
</tr>
|
| 244 |
+
<tr>
|
| 245 |
+
<td colspan=12 style="text-align:center"><strong>Evaluate Retriever with GPT-4 REASON-query</strong></td>
|
| 246 |
+
</tr>
|
| 247 |
+
<tr>
|
| 248 |
+
<td>BM25</td>
|
| 249 |
+
<td style="text-align:right">27.0</td>
|
| 250 |
+
<td style="text-align:right"><strong>53.6</strong></td>
|
| 251 |
+
<td style="text-align:right"><strong>54.1</strong></td>
|
| 252 |
+
<td style="text-align:right">24.3</td>
|
| 253 |
+
<td style="text-align:right">38.7</td>
|
| 254 |
+
<td style="text-align:right">18.9</td>
|
| 255 |
+
<td style="text-align:right">27.7</td>
|
| 256 |
+
<td style="text-align:right">26.3</td>
|
| 257 |
+
<td style="text-align:right">19.3</td>
|
| 258 |
+
<td style="text-align:right">17.6</td>
|
| 259 |
+
<td style="text-align:right">3.9</td>
|
| 260 |
+
<td style="text-align:right">19.2</td>
|
| 261 |
+
<td style="text-align:right">20.8</td>
|
| 262 |
+
</tr>
|
| 263 |
+
<tr>
|
| 264 |
+
<td>SBERT</td>
|
| 265 |
+
<td style="text-align:right">17.8</td>
|
| 266 |
+
<td style="text-align:right">18.5</td>
|
| 267 |
+
<td style="text-align:right">26.3</td>
|
| 268 |
+
<td style="text-align:right">17.5</td>
|
| 269 |
+
<td style="text-align:right">27.2</td>
|
| 270 |
+
<td style="text-align:right">8.8</td>
|
| 271 |
+
<td style="text-align:right">11.8</td>
|
| 272 |
+
<td style="text-align:right">17.5</td>
|
| 273 |
+
<td style="text-align:right">24.3</td>
|
| 274 |
+
<td style="text-align:right">10.3</td>
|
| 275 |
+
<td style="text-align:right">5.0</td>
|
| 276 |
+
<td style="text-align:right">22.3</td>
|
| 277 |
+
<td style="text-align:right">23.5</td>
|
| 278 |
+
</tr>
|
| 279 |
+
<tr>
|
| 280 |
+
<td>gte-Qwen1.5-7B</td>
|
| 281 |
+
<td style="text-align:right">24.8</td>
|
| 282 |
+
<td style="text-align:right">35.5</td>
|
| 283 |
+
<td style="text-align:right">43.1</td>
|
| 284 |
+
<td style="text-align:right">24.3</td>
|
| 285 |
+
<td style="text-align:right">34.3</td>
|
| 286 |
+
<td style="text-align:right">15.4</td>
|
| 287 |
+
<td style="text-align:right">22.9</td>
|
| 288 |
+
<td style="text-align:right">23.9</td>
|
| 289 |
+
<td style="text-align:right">25.4</td>
|
| 290 |
+
<td style="text-align:right">5.2</td>
|
| 291 |
+
<td style="text-align:right">4.6</td>
|
| 292 |
+
<td style="text-align:right">28.7</td>
|
| 293 |
+
<td style="text-align:right">34.6</td>
|
| 294 |
+
</tr>
|
| 295 |
+
<tr>
|
| 296 |
+
<td>Qwen3-4B</td>
|
| 297 |
+
<td style="text-align:right">5.5</td>
|
| 298 |
+
<td style="text-align:right">1.3</td>
|
| 299 |
+
<td style="text-align:right">17.3</td>
|
| 300 |
+
<td style="text-align:right">2.5</td>
|
| 301 |
+
<td style="text-align:right">6.2</td>
|
| 302 |
+
<td style="text-align:right">1.0</td>
|
| 303 |
+
<td style="text-align:right">4.8</td>
|
| 304 |
+
<td style="text-align:right">4.5</td>
|
| 305 |
+
<td style="text-align:right">3.0</td>
|
| 306 |
+
<td style="text-align:right">5.9</td>
|
| 307 |
+
<td style="text-align:right">0.0</td>
|
| 308 |
+
<td style="text-align:right">7.2</td>
|
| 309 |
+
<td style="text-align:right">12.5</td>
|
| 310 |
+
</tr>
|
| 311 |
+
<tr>
|
| 312 |
+
<td>OpenAI</td>
|
| 313 |
+
<td style="text-align:right">23.3</td>
|
| 314 |
+
<td style="text-align:right">35.2</td>
|
| 315 |
+
<td style="text-align:right">40.1</td>
|
| 316 |
+
<td style="text-align:right">25.1</td>
|
| 317 |
+
<td style="text-align:right">38.0</td>
|
| 318 |
+
<td style="text-align:right">13.6</td>
|
| 319 |
+
<td style="text-align:right">18.2</td>
|
| 320 |
+
<td style="text-align:right">24.2</td>
|
| 321 |
+
<td style="text-align:right">24.5</td>
|
| 322 |
+
<td style="text-align:right">6.5</td>
|
| 323 |
+
<td style="text-align:right">7.7</td>
|
| 324 |
+
<td style="text-align:right">22.9</td>
|
| 325 |
+
<td style="text-align:right">23.8</td>
|
| 326 |
+
</tr>
|
| 327 |
+
<tr>
|
| 328 |
+
<td>Google</td>
|
| 329 |
+
<td style="text-align:right">26.2</td>
|
| 330 |
+
<td style="text-align:right">36.4</td>
|
| 331 |
+
<td style="text-align:right">45.6</td>
|
| 332 |
+
<td style="text-align:right">25.6</td>
|
| 333 |
+
<td style="text-align:right">38.2</td>
|
| 334 |
+
<td style="text-align:right">18.7</td>
|
| 335 |
+
<td style="text-align:right"><strong>29.5</strong></td>
|
| 336 |
+
<td style="text-align:right">17.9</td>
|
| 337 |
+
<td style="text-align:right">31.1</td>
|
| 338 |
+
<td style="text-align:right">3.7</td>
|
| 339 |
+
<td style="text-align:right">10.0</td>
|
| 340 |
+
<td style="text-align:right">27.8</td>
|
| 341 |
+
<td style="text-align:right">30.4</td>
|
| 342 |
+
</tr>
|
| 343 |
+
<tr>
|
| 344 |
+
<td>ReasonIR-8B</td>
|
| 345 |
+
<td style="text-align:right">29.9</td>
|
| 346 |
+
<td style="text-align:right">43.6</td>
|
| 347 |
+
<td style="text-align:right">42.9</td>
|
| 348 |
+
<td style="text-align:right"><strong>32.7</strong></td>
|
| 349 |
+
<td style="text-align:right">38.8</td>
|
| 350 |
+
<td style="text-align:right">20.9</td>
|
| 351 |
+
<td style="text-align:right">25.8</td>
|
| 352 |
+
<td style="text-align:right"><strong>27.5</strong></td>
|
| 353 |
+
<td style="text-align:right">31.5</td>
|
| 354 |
+
<td style="text-align:right"><strong>19.6</strong></td>
|
| 355 |
+
<td style="text-align:right">7.4</td>
|
| 356 |
+
<td style="text-align:right">33.1</td>
|
| 357 |
+
<td style="text-align:right">35.7</td>
|
| 358 |
+
</tr>
|
| 359 |
+
<tr>
|
| 360 |
+
<td>RaDeR-7B</td>
|
| 361 |
+
<td style="text-align:right">29.2</td>
|
| 362 |
+
<td style="text-align:right">36.1</td>
|
| 363 |
+
<td style="text-align:right">42.9</td>
|
| 364 |
+
<td style="text-align:right">25.2</td>
|
| 365 |
+
<td style="text-align:right">37.9</td>
|
| 366 |
+
<td style="text-align:right">16.6</td>
|
| 367 |
+
<td style="text-align:right">27.4</td>
|
| 368 |
+
<td style="text-align:right">25.0</td>
|
| 369 |
+
<td style="text-align:right"><strong>34.8</strong></td>
|
| 370 |
+
<td style="text-align:right">11.9</td>
|
| 371 |
+
<td style="text-align:right"><strong>12.0</strong></td>
|
| 372 |
+
<td style="text-align:right">37.7</td>
|
| 373 |
+
<td style="text-align:right"><strong>43.4</strong></td>
|
| 374 |
+
</tr>
|
| 375 |
+
<tr>
|
| 376 |
+
<td>DIVER-Retriever</td>
|
| 377 |
+
<td style="text-align:right"><strong>32.1</strong></td>
|
| 378 |
+
<td style="text-align:right">51.9</td>
|
| 379 |
+
<td style="text-align:right">53.5</td>
|
| 380 |
+
<td style="text-align:right">29.5</td>
|
| 381 |
+
<td style="text-align:right"><strong>41.2</strong></td>
|
| 382 |
+
<td style="text-align:right"><strong>21.4</strong></td>
|
| 383 |
+
<td style="text-align:right">27.5</td>
|
| 384 |
+
<td style="text-align:right">26.1</td>
|
| 385 |
+
<td style="text-align:right">33.5</td>
|
| 386 |
+
<td style="text-align:right">11.7</td>
|
| 387 |
+
<td style="text-align:right">9.5</td>
|
| 388 |
+
<td style="text-align:right"><strong>39.3</strong></td>
|
| 389 |
+
<td style="text-align:right">39.7</td>
|
| 390 |
+
</tr>
|
| 391 |
+
<tr>
|
| 392 |
+
<td colspan=12 style="text-align:center"><strong>Evaluate retriever with DIVER-QExpand query</strong></td>
|
| 393 |
+
</tr>
|
| 394 |
+
<tr>
|
| 395 |
+
<td>ReasonIR-8B</td>
|
| 396 |
+
<td style="text-align:right">32.6</td>
|
| 397 |
+
<td style="text-align:right">49.4</td>
|
| 398 |
+
<td style="text-align:right">44.7</td>
|
| 399 |
+
<td style="text-align:right">32.4</td>
|
| 400 |
+
<td style="text-align:right">44.0</td>
|
| 401 |
+
<td style="text-align:right">26.6</td>
|
| 402 |
+
<td style="text-align:right">31.8</td>
|
| 403 |
+
<td style="text-align:right">29.0</td>
|
| 404 |
+
<td style="text-align:right">32.3</td>
|
| 405 |
+
<td style="text-align:right">12.8</td>
|
| 406 |
+
<td style="text-align:right">9.1</td>
|
| 407 |
+
<td style="text-align:right"><strong>40.7</strong></td>
|
| 408 |
+
<td style="text-align:right">38.4</td>
|
| 409 |
+
</tr>
|
| 410 |
+
<tr>
|
| 411 |
+
<td>+BM25 (Hybrid)</td>
|
| 412 |
+
<td style="text-align:right">35.7</td>
|
| 413 |
+
<td style="text-align:right">56.8</td>
|
| 414 |
+
<td style="text-align:right">53.5</td>
|
| 415 |
+
<td style="text-align:right"><strong>33.0</strong></td>
|
| 416 |
+
<td style="text-align:right"><strong>48.5</strong></td>
|
| 417 |
+
<td style="text-align:right"><strong>29.4</strong></td>
|
| 418 |
+
<td style="text-align:right"><strong>34.2</strong></td>
|
| 419 |
+
<td style="text-align:right"><strong>32.0</strong></td>
|
| 420 |
+
<td style="text-align:right"><strong>35.2</strong></td>
|
| 421 |
+
<td style="text-align:right">16.8</td>
|
| 422 |
+
<td style="text-align:right">12.9</td>
|
| 423 |
+
<td style="text-align:right">39.3</td>
|
| 424 |
+
<td style="text-align:right">36.8</td>
|
| 425 |
+
</tr>
|
| 426 |
+
<tr>
|
| 427 |
+
<td>DIVER-Retriever</td>
|
| 428 |
+
<td style="text-align:right"><strong>33.9</strong></td>
|
| 429 |
+
<td style="text-align:right">54.5</td>
|
| 430 |
+
<td style="text-align:right">52.7</td>
|
| 431 |
+
<td style="text-align:right">28.8</td>
|
| 432 |
+
<td style="text-align:right">44.9</td>
|
| 433 |
+
<td style="text-align:right">25.1</td>
|
| 434 |
+
<td style="text-align:right">27.4</td>
|
| 435 |
+
<td style="text-align:right">29.5</td>
|
| 436 |
+
<td style="text-align:right">34.5</td>
|
| 437 |
+
<td style="text-align:right">10.0</td>
|
| 438 |
+
<td style="text-align:right">14.5</td>
|
| 439 |
+
<td style="text-align:right"><strong>40.7</strong></td>
|
| 440 |
+
<td style="text-align:right">44.7</td>
|
| 441 |
+
</tr>
|
| 442 |
+
<tr>
|
| 443 |
+
<td>+BM25 (Hybrid)</td>
|
| 444 |
+
<td style="text-align:right"><strong>37.2</strong></td>
|
| 445 |
+
<td style="text-align:right"><strong>60.0</strong></td>
|
| 446 |
+
<td style="text-align:right"><strong>55.9</strong></td>
|
| 447 |
+
<td style="text-align:right">31.8</td>
|
| 448 |
+
<td style="text-align:right">47.9</td>
|
| 449 |
+
<td style="text-align:right">27.1</td>
|
| 450 |
+
<td style="text-align:right">33.9</td>
|
| 451 |
+
<td style="text-align:right">31.9</td>
|
| 452 |
+
<td style="text-align:right">35.1</td>
|
| 453 |
+
<td style="text-align:right"><strong>23.1</strong></td>
|
| 454 |
+
<td style="text-align:right"><strong>16.8</strong></td>
|
| 455 |
+
<td style="text-align:right">36.9</td>
|
| 456 |
+
<td style="text-align:right"><strong>46.6</strong></td>
|
| 457 |
+
</tr>
|
| 458 |
+
</tbody>
|
| 459 |
+
</table>
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
## Usage
|
| 463 |
+
|
| 464 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 465 |
+
|
| 466 |
+
### Inference
|
| 467 |
+
|
| 468 |
+
#### Sentence Transformers Usage
|
| 469 |
+
|
| 470 |
+
```bash
|
| 471 |
+
# Requires transformers>=4.51.0
|
| 472 |
+
# Requires sentence-transformers>=2.7.0
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
from sentence_transformers import SentenceTransformer
|
| 476 |
+
|
| 477 |
+
# Load the model
|
| 478 |
+
model = SentenceTransformer("AQ-MedAI/Diver-Retriever-4B-1020")
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
# The queries and documents to embed
|
| 482 |
+
queries = [
|
| 483 |
+
"What is the capital of China?",
|
| 484 |
+
"Explain gravity",
|
| 485 |
+
]
|
| 486 |
+
documents = [
|
| 487 |
+
"The capital of China is Beijing.",
|
| 488 |
+
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
|
| 489 |
+
]
|
| 490 |
+
|
| 491 |
+
# Encode the queries and documents. Note that queries benefit from using a prompt
|
| 492 |
+
# Here we use the prompt called "query" stored under `model.prompts`, but you can
|
| 493 |
+
# also pass your own prompt via the `prompt` argument
|
| 494 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
| 495 |
+
document_embeddings = model.encode(documents)
|
| 496 |
+
|
| 497 |
+
# Compute the (cosine) similarity between the query and document embeddings
|
| 498 |
+
similarity = model.similarity(query_embeddings, document_embeddings)
|
| 499 |
+
print(similarity)
|
| 500 |
+
|
| 501 |
+
```
|
| 502 |
+
#### Transformers Usage
|
| 503 |
+
|
| 504 |
+
```bash
|
| 505 |
+
# Requires transformers>=4.51.0
|
| 506 |
+
import torch
|
| 507 |
+
import torch.nn.functional as F
|
| 508 |
+
|
| 509 |
+
from torch import Tensor
|
| 510 |
+
from transformers import AutoTokenizer, AutoModel
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def last_token_pool(last_hidden_states: Tensor,
|
| 514 |
+
attention_mask: Tensor) -> Tensor:
|
| 515 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
| 516 |
+
if left_padding:
|
| 517 |
+
return last_hidden_states[:, -1]
|
| 518 |
+
else:
|
| 519 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 520 |
+
batch_size = last_hidden_states.shape[0]
|
| 521 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
| 525 |
+
return f'Instruct: {task_description}\nQuery:{query}'
|
| 526 |
+
|
| 527 |
+
# Each query must come with a one-sentence instruction that describes the task
|
| 528 |
+
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
| 529 |
+
|
| 530 |
+
queries = [
|
| 531 |
+
get_detailed_instruct(task, 'What is the capital of China?'),
|
| 532 |
+
get_detailed_instruct(task, 'Explain gravity')
|
| 533 |
+
]
|
| 534 |
+
# No need to add instructions for retrieval documents
|
| 535 |
+
documents = [
|
| 536 |
+
"The capital of China is Beijing.",
|
| 537 |
+
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
|
| 538 |
+
]
|
| 539 |
+
input_texts = queries + documents
|
| 540 |
+
|
| 541 |
+
tokenizer = AutoTokenizer.from_pretrained('AQ-MedAI/Diver-Retriever-4B-1020', padding_side='left')
|
| 542 |
+
model = AutoModel.from_pretrained('AQ-MedAI/Diver-Retriever-4B-1020')
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
max_length = 8192
|
| 546 |
+
|
| 547 |
+
# Tokenize the input texts
|
| 548 |
+
batch_dict = tokenizer(
|
| 549 |
+
input_texts,
|
| 550 |
+
padding=True,
|
| 551 |
+
truncation=True,
|
| 552 |
+
max_length=max_length,
|
| 553 |
+
return_tensors="pt",
|
| 554 |
+
)
|
| 555 |
+
batch_dict.to(model.device)
|
| 556 |
+
outputs = model(**batch_dict)
|
| 557 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 558 |
+
|
| 559 |
+
# normalize embeddings
|
| 560 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 561 |
+
scores = (embeddings[:2] @ embeddings[2:].T)
|
| 562 |
+
print(scores.tolist())
|
| 563 |
+
# [[0.9319270849227905, 0.5878604054450989], [0.639923095703125, 0.7950234413146973]]
|
| 564 |
+
|
| 565 |
+
```
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
### Finetuning
|
| 570 |
+
We recommend you to use [swift](https://github.com/modelscope/ms-swift) to finetune our DIVER-Retriever-4B-1020 with infonce.
|
| 571 |
+
|
| 572 |
+
Before starting training, please ensure your environment is properly configured.
|
| 573 |
+
|
| 574 |
+
```bash
|
| 575 |
+
pip install ms-swift -U
|
| 576 |
+
# Install from source
|
| 577 |
+
pip install git+https://github.com/modelscope/ms-swift.git
|
| 578 |
+
|
| 579 |
+
pip install transformers -U
|
| 580 |
+
|
| 581 |
+
# Optional packages
|
| 582 |
+
pip install deepspeed # multi-GPU training
|
| 583 |
+
pip install liger-kernel # save GPU memory resources
|
| 584 |
+
pip install flash-attn --no-build-isolation
|
| 585 |
+
```
|
| 586 |
+
|
| 587 |
+
#### Training Command
|
| 588 |
+
|
| 589 |
+
Using the infonce loss as an example, the complete training command is as follows:
|
| 590 |
+
|
| 591 |
+
```bash
|
| 592 |
+
nproc_per_node=8
|
| 593 |
+
NPROC_PER_NODE=$nproc_per_node \
|
| 594 |
+
swift sft \
|
| 595 |
+
--model DIVER/DIVER-Retriever-4B-1020 \
|
| 596 |
+
--task_type embedding \
|
| 597 |
+
--model_type qwen3_emb \
|
| 598 |
+
--train_type full \
|
| 599 |
+
--dataset your_dataset \
|
| 600 |
+
--split_dataset_ratio 0.05 \
|
| 601 |
+
--eval_strategy steps \
|
| 602 |
+
--output_dir output \
|
| 603 |
+
--eval_steps 20 \
|
| 604 |
+
--num_train_epochs 5 \
|
| 605 |
+
--save_steps 20 \
|
| 606 |
+
--per_device_train_batch_size 4 \
|
| 607 |
+
--per_device_eval_batch_size 4 \
|
| 608 |
+
--gradient_accumulation_steps 4 \
|
| 609 |
+
--learning_rate 6e-6 \
|
| 610 |
+
--loss_type infonce \
|
| 611 |
+
--label_names labels \
|
| 612 |
+
--dataloader_drop_last true \
|
| 613 |
+
--deepspeed zero3
|
| 614 |
+
```
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
## Citation
|
| 624 |
+
|
| 625 |
+
<!-- If a paper or blog post is introducing the model, the APA and BibTeX information for that should go in this section. -->
|
| 626 |
+
If you find our work helpful, feel free to cite it.
|
| 627 |
+
|
| 628 |
+
```
|
| 629 |
+
@misc{long2025divermultistageapproachreasoningintensive,
|
| 630 |
+
title={DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval},
|
| 631 |
+
author={Meixiu Long and Duolin Sun and Dan Yang and Junjie Wang and Yue Shen and Jian Wang and Peng Wei and Jinjie Gu and Jiahai Wang},
|
| 632 |
+
year={2025},
|
| 633 |
+
eprint={2508.07995},
|
| 634 |
+
archivePrefix={arXiv},
|
| 635 |
+
primaryClass={cs.IR},
|
| 636 |
+
url={https://arxiv.org/abs/2508.07995},
|
| 637 |
+
}
|
| 638 |
+
```
|