Upload folder using huggingface_hub
Browse files- README.md +164 -0
- config.json +9 -0
- marqo_fashionSigLIP.py +237 -0
- model.safetensors +3 -0
- open_clip_config.json +45 -0
- preprocessor_config.json +27 -0
- special_tokens_map.json +125 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +939 -0
README.md
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- clip
|
| 4 |
+
- transformers
|
| 5 |
+
- e-commerce
|
| 6 |
+
- fashion
|
| 7 |
+
- multimodal retrieval
|
| 8 |
+
- siglip
|
| 9 |
+
- transformers.js
|
| 10 |
+
library_name: open_clip
|
| 11 |
+
pipeline_tag: zero-shot-image-classification
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
metrics:
|
| 16 |
+
- precision
|
| 17 |
+
- recall
|
| 18 |
+
- MRR
|
| 19 |
+
---
|
| 20 |
+
# Marqo-FashionSigLIP Model Card
|
| 21 |
+
|
| 22 |
+
[](https://github.com/marqo-ai/marqo-FashionCLIP)
|
| 23 |
+
|
| 24 |
+
Marqo-FashionSigLIP is a multimodal embedding model that provides up to [57% improvement in MRR and recall](https://www.marqo.ai/blog/search-model-for-fashion) over [fashion clip](https://huggingface.co/patrickjohncyh/fashion-clip).
|
| 25 |
+
|
| 26 |
+
Marqo-FashionSigLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products.
|
| 27 |
+
The model was fine-tuned from ViT-B-16-SigLIP (webli).
|
| 28 |
+
|
| 29 |
+
**Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP)
|
| 30 |
+
|
| 31 |
+
**Blog**: [Marqo Blog](https://www.marqo.ai/blog/search-model-for-fashion)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
## Usage
|
| 35 |
+
|
| 36 |
+
### Hugging Face
|
| 37 |
+
|
| 38 |
+
The model can be loaded with AutoModel by
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from transformers import AutoModel, AutoProcessor
|
| 42 |
+
model = AutoModel.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True)
|
| 43 |
+
processor = AutoProcessor.from_pretrained('Marqo/marqo-fashionSigLIP', trust_remote_code=True)
|
| 44 |
+
|
| 45 |
+
import torch
|
| 46 |
+
from PIL import Image
|
| 47 |
+
|
| 48 |
+
image = [Image.open("docs/fashion-hippo.png")]
|
| 49 |
+
text = ["a hat", "a t-shirt", "shoes"]
|
| 50 |
+
processed = processor(text=text, images=image, padding='max_length', return_tensors="pt")
|
| 51 |
+
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
image_features = model.get_image_features(processed['pixel_values'], normalize=True)
|
| 54 |
+
text_features = model.get_text_features(processed['input_ids'], normalize=True)
|
| 55 |
+
|
| 56 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
| 57 |
+
|
| 58 |
+
print("Label probs:", text_probs)
|
| 59 |
+
# [0.98379946, 0.01294010, 0.00326044]
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
### OpenCLIP
|
| 63 |
+
|
| 64 |
+
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
import open_clip
|
| 68 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
| 69 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
| 70 |
+
|
| 71 |
+
import torch
|
| 72 |
+
from PIL import Image
|
| 73 |
+
|
| 74 |
+
image = preprocess_val(Image.open("docs/fashion-hippo.png")).unsqueeze(0)
|
| 75 |
+
text = tokenizer(["a hat", "a t-shirt", "shoes"])
|
| 76 |
+
|
| 77 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 78 |
+
image_features = model.encode_image(image, normalize=True)
|
| 79 |
+
text_features = model.encode_text(text, normalize=True)
|
| 80 |
+
|
| 81 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
| 82 |
+
|
| 83 |
+
print("Label probs:", text_probs)
|
| 84 |
+
# [0.9860219105287394, 0.00777916527489097, 0.006198924196369721]
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### Transformers.js
|
| 88 |
+
|
| 89 |
+
You can also run the model in JavaScript with the [Transformers.js](https://huggingface.co/docs/transformers.js) library.
|
| 90 |
+
|
| 91 |
+
First, install it from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
npm i @huggingface/transformers
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
Then, compute embeddings as follows:
|
| 98 |
+
```js
|
| 99 |
+
import { SiglipTextModel, SiglipVisionModel, AutoTokenizer, AutoProcessor, RawImage, softmax, dot } from '@huggingface/transformers';
|
| 100 |
+
|
| 101 |
+
const model_id = 'Marqo/marqo-fashionSigLIP';
|
| 102 |
+
|
| 103 |
+
// Load tokenizer and text model
|
| 104 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
| 105 |
+
const text_model = await SiglipTextModel.from_pretrained(model_id);
|
| 106 |
+
|
| 107 |
+
// Load processor and vision model
|
| 108 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
| 109 |
+
const vision_model = await SiglipVisionModel.from_pretrained(model_id);
|
| 110 |
+
|
| 111 |
+
// Run tokenization
|
| 112 |
+
const texts = ['a hat', 'a t-shirt', 'shoes'];
|
| 113 |
+
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
|
| 114 |
+
|
| 115 |
+
// Compute text embeddings
|
| 116 |
+
const { text_embeds } = await text_model(text_inputs);
|
| 117 |
+
|
| 118 |
+
// Read image and run processor
|
| 119 |
+
const image = await RawImage.read('https://raw.githubusercontent.com/marqo-ai/marqo-FashionCLIP/main/docs/fashion-hippo.png');
|
| 120 |
+
const image_inputs = await processor(image);
|
| 121 |
+
|
| 122 |
+
// Compute vision embeddings
|
| 123 |
+
const { image_embeds } = await vision_model(image_inputs);
|
| 124 |
+
|
| 125 |
+
// Compute similarity scores
|
| 126 |
+
const normalized_text_embeds = text_embeds.normalize().tolist();
|
| 127 |
+
const normalized_image_embeds = image_embeds.normalize().tolist()[0];
|
| 128 |
+
|
| 129 |
+
const text_probs = softmax(normalized_text_embeds.map((text_embed) =>
|
| 130 |
+
100.0 * dot(normalized_image_embeds, text_embed)
|
| 131 |
+
));
|
| 132 |
+
console.log(text_probs);
|
| 133 |
+
// [0.9860219105287394, 0.00777916527489097, 0.006198924196369721]
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
## Benchmark Results
|
| 137 |
+
Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below:
|
| 138 |
+
|
| 139 |
+
**Text-To-Image (Averaged across 6 datasets)**
|
| 140 |
+
| Model | AvgRecall | Recall@1 | Recall@10 | MRR |
|
| 141 |
+
|----------------------------|-------------|------------|-------------|-----------|
|
| 142 |
+
| Marqo-FashionSigLIP | **0.231** | **0.121** | **0.340** | **0.239** |
|
| 143 |
+
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
|
| 144 |
+
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
|
| 145 |
+
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
|
| 146 |
+
| ViT-B-16-SigLIP-webli | 0.212 | 0.111 | 0.314 | 0.214 |
|
| 147 |
+
|
| 148 |
+
**Category-To-Product (Averaged across 5 datasets)**
|
| 149 |
+
| Model | AvgP | P@1 | P@10 | MRR |
|
| 150 |
+
|----------------------------|-----------|-----------|-----------|-----------|
|
| 151 |
+
| Marqo-FashionSigLIP | **0.737** | **0.758** | **0.716** | **0.812** |
|
| 152 |
+
| FashionCLIP2.0 | 0.684 | 0.681 | 0.686 | 0.741 |
|
| 153 |
+
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
|
| 154 |
+
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
|
| 155 |
+
| ViT-B-16-SigLIP-webli | 0.688 | 0.690 | 0.685 | 0.751 |
|
| 156 |
+
|
| 157 |
+
**Sub-Category-To-Product (Averaged across 4 datasets)**
|
| 158 |
+
| Model | AvgP | P@1 | P@10 | MRR |
|
| 159 |
+
|----------------------------|-----------|-----------|-----------|-----------|
|
| 160 |
+
| Marqo-FashionSigLIP | **0.725** | **0.767** | **0.683** | **0.811** |
|
| 161 |
+
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
|
| 162 |
+
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
|
| 163 |
+
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |
|
| 164 |
+
| ViT-B-16-SigLIP-webli | 0.643 | 0.643 | 0.643 | 0.726 |
|
config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoConfig": "marqo_fashionSigLIP.MarqoFashionSigLIPConfig",
|
| 4 |
+
"AutoModel": "marqo_fashionSigLIP.MarqoFashionSigLIP",
|
| 5 |
+
"AutoProcessor": "marqo_fashionSigLIP.MarqoFashionSigLIPProcessor"
|
| 6 |
+
},
|
| 7 |
+
"open_clip_model_name": "hf-hub:Marqo/marqo-fashionSigLIP",
|
| 8 |
+
"model_type": "siglip"
|
| 9 |
+
}
|
marqo_fashionSigLIP.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from open_clip import create_model
|
| 3 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 4 |
+
from transformers.models.siglip.modeling_siglip import SiglipOutput
|
| 5 |
+
from typing import Optional, Tuple, Union, List
|
| 6 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 7 |
+
from transformers.image_utils import ImageInput
|
| 8 |
+
from transformers.processing_utils import ProcessorMixin
|
| 9 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
| 10 |
+
from transformers.utils import TensorType
|
| 11 |
+
import string
|
| 12 |
+
import ftfy
|
| 13 |
+
import html
|
| 14 |
+
|
| 15 |
+
def basic_clean(text):
|
| 16 |
+
text = ftfy.fix_text(text)
|
| 17 |
+
text = html.unescape(html.unescape(text))
|
| 18 |
+
return text.strip()
|
| 19 |
+
|
| 20 |
+
def canonicalize_text(
|
| 21 |
+
text,
|
| 22 |
+
*,
|
| 23 |
+
keep_punctuation_exact_string=None,
|
| 24 |
+
trans_punctuation: dict = str.maketrans("", "", string.punctuation),
|
| 25 |
+
):
|
| 26 |
+
"""Returns canonicalized `text` (lowercase and punctuation removed).
|
| 27 |
+
|
| 28 |
+
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
text: string to be canonicalized.
|
| 32 |
+
keep_punctuation_exact_string: If provided, then this exact string kept.
|
| 33 |
+
For example providing '{}' will keep any occurrences of '{}' (but will
|
| 34 |
+
still remove '{' and '}' that appear separately).
|
| 35 |
+
"""
|
| 36 |
+
text = text.replace("_", " ")
|
| 37 |
+
if keep_punctuation_exact_string:
|
| 38 |
+
text = keep_punctuation_exact_string.join(
|
| 39 |
+
part.translate(trans_punctuation)
|
| 40 |
+
for part in text.split(keep_punctuation_exact_string)
|
| 41 |
+
)
|
| 42 |
+
else:
|
| 43 |
+
text = text.translate(trans_punctuation)
|
| 44 |
+
text = text.lower()
|
| 45 |
+
text = " ".join(text.split())
|
| 46 |
+
return text.strip()
|
| 47 |
+
|
| 48 |
+
def _clean_canonicalize(x):
|
| 49 |
+
# basic, remove whitespace, remove punctuation, lower case
|
| 50 |
+
return canonicalize_text(basic_clean(x))
|
| 51 |
+
|
| 52 |
+
class MarqoFashionSigLIPConfig(PretrainedConfig):
|
| 53 |
+
def __init__(
|
| 54 |
+
self,
|
| 55 |
+
open_clip_model_name: str = "",
|
| 56 |
+
**kwargs,
|
| 57 |
+
):
|
| 58 |
+
super().__init__(**kwargs)
|
| 59 |
+
self.open_clip_model_name = open_clip_model_name
|
| 60 |
+
|
| 61 |
+
class MarqoFashionSigLIPProcessor(ProcessorMixin):
|
| 62 |
+
r"""
|
| 63 |
+
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
| 64 |
+
|
| 65 |
+
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
| 66 |
+
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
image_processor ([`SiglipImageProcessor`]):
|
| 70 |
+
The image processor is a required input.
|
| 71 |
+
tokenizer ([`T5TokenizerFast`]):
|
| 72 |
+
The tokenizer is a required input.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
attributes = ["image_processor", "tokenizer"]
|
| 76 |
+
image_processor_class = "SiglipImageProcessor"
|
| 77 |
+
tokenizer_class = "T5TokenizerFast"
|
| 78 |
+
|
| 79 |
+
def __init__(self, image_processor, tokenizer):
|
| 80 |
+
super().__init__(image_processor, tokenizer)
|
| 81 |
+
|
| 82 |
+
def __call__(
|
| 83 |
+
self,
|
| 84 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 85 |
+
images: ImageInput = None,
|
| 86 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 87 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
| 88 |
+
max_length: int = None,
|
| 89 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 90 |
+
) -> BatchFeature:
|
| 91 |
+
"""
|
| 92 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
| 93 |
+
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
| 94 |
+
the text. To prepare the image(s), this method forwards the `images` argument to
|
| 95 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 96 |
+
of the above two methods for more information.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 100 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 101 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 102 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 103 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 104 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 105 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 106 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
| 107 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 108 |
+
index) among:
|
| 109 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 110 |
+
sequence if provided).
|
| 111 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 112 |
+
acceptable input length for the model if that argument is not provided.
|
| 113 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 114 |
+
lengths).
|
| 115 |
+
max_length (`int`, *optional*):
|
| 116 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 117 |
+
truncation (`bool`, *optional*):
|
| 118 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
| 119 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 120 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 121 |
+
|
| 122 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 123 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 124 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 125 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 129 |
+
|
| 130 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
| 131 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
| 132 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
| 133 |
+
`None`).
|
| 134 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
| 135 |
+
"""
|
| 136 |
+
|
| 137 |
+
if text is None and images is None:
|
| 138 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
| 139 |
+
|
| 140 |
+
if text is not None:
|
| 141 |
+
if isinstance(text, str):
|
| 142 |
+
text = [text]
|
| 143 |
+
text = [_clean_canonicalize(raw_text) for raw_text in text]
|
| 144 |
+
encoding = self.tokenizer(
|
| 145 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
if images is not None:
|
| 149 |
+
try:
|
| 150 |
+
images = [image.convert('RGB') for image in images] if isinstance(images, list) else images.convert('RGB')
|
| 151 |
+
except:
|
| 152 |
+
images = images
|
| 153 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
| 154 |
+
|
| 155 |
+
if text is not None and images is not None:
|
| 156 |
+
encoding["pixel_values"] = image_features.pixel_values
|
| 157 |
+
return encoding
|
| 158 |
+
elif text is not None:
|
| 159 |
+
return encoding
|
| 160 |
+
else:
|
| 161 |
+
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
| 162 |
+
|
| 163 |
+
def decode(self, *args, **kwargs):
|
| 164 |
+
"""
|
| 165 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 166 |
+
the docstring of this method for more information.
|
| 167 |
+
"""
|
| 168 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 169 |
+
|
| 170 |
+
def batch_decode(self, *args, **kwargs):
|
| 171 |
+
"""
|
| 172 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 173 |
+
refer to the docstring of this method for more information.
|
| 174 |
+
"""
|
| 175 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 176 |
+
|
| 177 |
+
@property
|
| 178 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
| 179 |
+
def model_input_names(self):
|
| 180 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 181 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 182 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
| 183 |
+
|
| 184 |
+
class MarqoFashionSigLIP(PreTrainedModel):
|
| 185 |
+
config_class = MarqoFashionSigLIPConfig
|
| 186 |
+
|
| 187 |
+
def __init__(self, config: MarqoFashionSigLIPConfig):
|
| 188 |
+
super().__init__(config)
|
| 189 |
+
self.config = config
|
| 190 |
+
self.model = create_model(config.open_clip_model_name, output_dict=True)
|
| 191 |
+
self.model.eval()
|
| 192 |
+
self.model.to(self.device)
|
| 193 |
+
|
| 194 |
+
def get_image_features(
|
| 195 |
+
self,
|
| 196 |
+
pixel_values: torch.FloatTensor,
|
| 197 |
+
normalize: bool = False,
|
| 198 |
+
**kwargs
|
| 199 |
+
) -> torch.FloatTensor:
|
| 200 |
+
|
| 201 |
+
with torch.inference_mode():
|
| 202 |
+
image_features = self.model.encode_image(pixel_values, normalize=normalize)
|
| 203 |
+
return image_features
|
| 204 |
+
|
| 205 |
+
def get_text_features(
|
| 206 |
+
self,
|
| 207 |
+
input_ids: torch.Tensor,
|
| 208 |
+
normalize: bool = False,
|
| 209 |
+
**kwargs
|
| 210 |
+
) -> torch.FloatTensor:
|
| 211 |
+
|
| 212 |
+
with torch.inference_mode():
|
| 213 |
+
text_features = self.model.encode_text(input_ids, normalize=normalize)
|
| 214 |
+
return text_features
|
| 215 |
+
|
| 216 |
+
def forward(
|
| 217 |
+
self,
|
| 218 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 219 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 220 |
+
return_dict: Optional[bool] = None,
|
| 221 |
+
) -> Union[Tuple, SiglipOutput]:
|
| 222 |
+
|
| 223 |
+
vision_outputs = self.get_image_features(pixel_values=pixel_values, normalize=True)
|
| 224 |
+
text_outputs = self.get_text_features(input_ids=input_ids, normalize=True)
|
| 225 |
+
|
| 226 |
+
logits_per_text = text_outputs @ vision_outputs.T
|
| 227 |
+
logits_per_image = logits_per_text.T
|
| 228 |
+
|
| 229 |
+
if not return_dict:
|
| 230 |
+
return logits_per_image, logits_per_text, text_outputs, vision_outputs
|
| 231 |
+
|
| 232 |
+
return SiglipOutput(
|
| 233 |
+
logits_per_image=logits_per_image,
|
| 234 |
+
logits_per_text=logits_per_text,
|
| 235 |
+
text_embeds=text_outputs,
|
| 236 |
+
image_embeds=vision_outputs
|
| 237 |
+
)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a58c671a74e072a677d565b515c23e14855f149db699db4be2ee81816019a07
|
| 3 |
+
size 812660320
|
open_clip_config.json
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_cfg": {
|
| 3 |
+
"embed_dim": 768,
|
| 4 |
+
"init_logit_bias": -10,
|
| 5 |
+
"custom_text": true,
|
| 6 |
+
"vision_cfg": {
|
| 7 |
+
"image_size": 224,
|
| 8 |
+
"timm_model_name": "vit_base_patch16_siglip_224",
|
| 9 |
+
"timm_model_pretrained": false,
|
| 10 |
+
"timm_pool": "map",
|
| 11 |
+
"timm_proj": "none"
|
| 12 |
+
},
|
| 13 |
+
"text_cfg": {
|
| 14 |
+
"context_length": 64,
|
| 15 |
+
"vocab_size": 32000,
|
| 16 |
+
"hf_tokenizer_name": "timm/ViT-B-16-SigLIP",
|
| 17 |
+
"tokenizer_kwargs": {
|
| 18 |
+
"clean": "canonicalize"
|
| 19 |
+
},
|
| 20 |
+
"width": 768,
|
| 21 |
+
"heads": 12,
|
| 22 |
+
"layers": 12,
|
| 23 |
+
"no_causal_mask": true,
|
| 24 |
+
"proj_bias": true,
|
| 25 |
+
"pool_type": "last",
|
| 26 |
+
"norm_kwargs": {
|
| 27 |
+
"eps": 1e-06
|
| 28 |
+
}
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"preprocess_cfg": {
|
| 32 |
+
"mean": [
|
| 33 |
+
0.5,
|
| 34 |
+
0.5,
|
| 35 |
+
0.5
|
| 36 |
+
],
|
| 37 |
+
"std": [
|
| 38 |
+
0.5,
|
| 39 |
+
0.5,
|
| 40 |
+
0.5
|
| 41 |
+
],
|
| 42 |
+
"interpolation": "bicubic",
|
| 43 |
+
"resize_mode": "squash"
|
| 44 |
+
}
|
| 45 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "marqo_fashionSigLIP.MarqoFashionSigLIPProcessor"
|
| 4 |
+
},
|
| 5 |
+
"do_normalize": true,
|
| 6 |
+
"do_rescale": true,
|
| 7 |
+
"do_resize": true,
|
| 8 |
+
"do_convert_rgb": true,
|
| 9 |
+
"image_processor_type": "SiglipImageProcessor",
|
| 10 |
+
"image_mean": [
|
| 11 |
+
0.5,
|
| 12 |
+
0.5,
|
| 13 |
+
0.5
|
| 14 |
+
],
|
| 15 |
+
"processor_class": "marqo_fashionSigLIP.MarqoFashionSigLIPProcessor",
|
| 16 |
+
"resample": 3,
|
| 17 |
+
"rescale_factor": 0.00392156862745098,
|
| 18 |
+
"size": {
|
| 19 |
+
"height": 224,
|
| 20 |
+
"width": 224
|
| 21 |
+
},
|
| 22 |
+
"image_std": [
|
| 23 |
+
0.5,
|
| 24 |
+
0.5,
|
| 25 |
+
0.5
|
| 26 |
+
]
|
| 27 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<extra_id_0>",
|
| 4 |
+
"<extra_id_1>",
|
| 5 |
+
"<extra_id_2>",
|
| 6 |
+
"<extra_id_3>",
|
| 7 |
+
"<extra_id_4>",
|
| 8 |
+
"<extra_id_5>",
|
| 9 |
+
"<extra_id_6>",
|
| 10 |
+
"<extra_id_7>",
|
| 11 |
+
"<extra_id_8>",
|
| 12 |
+
"<extra_id_9>",
|
| 13 |
+
"<extra_id_10>",
|
| 14 |
+
"<extra_id_11>",
|
| 15 |
+
"<extra_id_12>",
|
| 16 |
+
"<extra_id_13>",
|
| 17 |
+
"<extra_id_14>",
|
| 18 |
+
"<extra_id_15>",
|
| 19 |
+
"<extra_id_16>",
|
| 20 |
+
"<extra_id_17>",
|
| 21 |
+
"<extra_id_18>",
|
| 22 |
+
"<extra_id_19>",
|
| 23 |
+
"<extra_id_20>",
|
| 24 |
+
"<extra_id_21>",
|
| 25 |
+
"<extra_id_22>",
|
| 26 |
+
"<extra_id_23>",
|
| 27 |
+
"<extra_id_24>",
|
| 28 |
+
"<extra_id_25>",
|
| 29 |
+
"<extra_id_26>",
|
| 30 |
+
"<extra_id_27>",
|
| 31 |
+
"<extra_id_28>",
|
| 32 |
+
"<extra_id_29>",
|
| 33 |
+
"<extra_id_30>",
|
| 34 |
+
"<extra_id_31>",
|
| 35 |
+
"<extra_id_32>",
|
| 36 |
+
"<extra_id_33>",
|
| 37 |
+
"<extra_id_34>",
|
| 38 |
+
"<extra_id_35>",
|
| 39 |
+
"<extra_id_36>",
|
| 40 |
+
"<extra_id_37>",
|
| 41 |
+
"<extra_id_38>",
|
| 42 |
+
"<extra_id_39>",
|
| 43 |
+
"<extra_id_40>",
|
| 44 |
+
"<extra_id_41>",
|
| 45 |
+
"<extra_id_42>",
|
| 46 |
+
"<extra_id_43>",
|
| 47 |
+
"<extra_id_44>",
|
| 48 |
+
"<extra_id_45>",
|
| 49 |
+
"<extra_id_46>",
|
| 50 |
+
"<extra_id_47>",
|
| 51 |
+
"<extra_id_48>",
|
| 52 |
+
"<extra_id_49>",
|
| 53 |
+
"<extra_id_50>",
|
| 54 |
+
"<extra_id_51>",
|
| 55 |
+
"<extra_id_52>",
|
| 56 |
+
"<extra_id_53>",
|
| 57 |
+
"<extra_id_54>",
|
| 58 |
+
"<extra_id_55>",
|
| 59 |
+
"<extra_id_56>",
|
| 60 |
+
"<extra_id_57>",
|
| 61 |
+
"<extra_id_58>",
|
| 62 |
+
"<extra_id_59>",
|
| 63 |
+
"<extra_id_60>",
|
| 64 |
+
"<extra_id_61>",
|
| 65 |
+
"<extra_id_62>",
|
| 66 |
+
"<extra_id_63>",
|
| 67 |
+
"<extra_id_64>",
|
| 68 |
+
"<extra_id_65>",
|
| 69 |
+
"<extra_id_66>",
|
| 70 |
+
"<extra_id_67>",
|
| 71 |
+
"<extra_id_68>",
|
| 72 |
+
"<extra_id_69>",
|
| 73 |
+
"<extra_id_70>",
|
| 74 |
+
"<extra_id_71>",
|
| 75 |
+
"<extra_id_72>",
|
| 76 |
+
"<extra_id_73>",
|
| 77 |
+
"<extra_id_74>",
|
| 78 |
+
"<extra_id_75>",
|
| 79 |
+
"<extra_id_76>",
|
| 80 |
+
"<extra_id_77>",
|
| 81 |
+
"<extra_id_78>",
|
| 82 |
+
"<extra_id_79>",
|
| 83 |
+
"<extra_id_80>",
|
| 84 |
+
"<extra_id_81>",
|
| 85 |
+
"<extra_id_82>",
|
| 86 |
+
"<extra_id_83>",
|
| 87 |
+
"<extra_id_84>",
|
| 88 |
+
"<extra_id_85>",
|
| 89 |
+
"<extra_id_86>",
|
| 90 |
+
"<extra_id_87>",
|
| 91 |
+
"<extra_id_88>",
|
| 92 |
+
"<extra_id_89>",
|
| 93 |
+
"<extra_id_90>",
|
| 94 |
+
"<extra_id_91>",
|
| 95 |
+
"<extra_id_92>",
|
| 96 |
+
"<extra_id_93>",
|
| 97 |
+
"<extra_id_94>",
|
| 98 |
+
"<extra_id_95>",
|
| 99 |
+
"<extra_id_96>",
|
| 100 |
+
"<extra_id_97>",
|
| 101 |
+
"<extra_id_98>",
|
| 102 |
+
"<extra_id_99>"
|
| 103 |
+
],
|
| 104 |
+
"eos_token": {
|
| 105 |
+
"content": "</s>",
|
| 106 |
+
"lstrip": true,
|
| 107 |
+
"normalized": true,
|
| 108 |
+
"rstrip": true,
|
| 109 |
+
"single_word": false
|
| 110 |
+
},
|
| 111 |
+
"pad_token": {
|
| 112 |
+
"content": "</s>",
|
| 113 |
+
"lstrip": true,
|
| 114 |
+
"normalized": true,
|
| 115 |
+
"rstrip": true,
|
| 116 |
+
"single_word": false
|
| 117 |
+
},
|
| 118 |
+
"unk_token": {
|
| 119 |
+
"content": "<unk>",
|
| 120 |
+
"lstrip": true,
|
| 121 |
+
"normalized": true,
|
| 122 |
+
"rstrip": true,
|
| 123 |
+
"single_word": false
|
| 124 |
+
}
|
| 125 |
+
}
|
spiece.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
| 3 |
+
size 791656
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,939 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<pad>",
|
| 5 |
+
"lstrip": true,
|
| 6 |
+
"normalized": true,
|
| 7 |
+
"rstrip": true,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "</s>",
|
| 13 |
+
"lstrip": true,
|
| 14 |
+
"normalized": true,
|
| 15 |
+
"rstrip": true,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<unk>",
|
| 21 |
+
"lstrip": true,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": true,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"32000": {
|
| 28 |
+
"content": "<extra_id_99>",
|
| 29 |
+
"lstrip": true,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": true,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"32001": {
|
| 36 |
+
"content": "<extra_id_98>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": true,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"32002": {
|
| 44 |
+
"content": "<extra_id_97>",
|
| 45 |
+
"lstrip": true,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": true,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"32003": {
|
| 52 |
+
"content": "<extra_id_96>",
|
| 53 |
+
"lstrip": true,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": true,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"32004": {
|
| 60 |
+
"content": "<extra_id_95>",
|
| 61 |
+
"lstrip": true,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": true,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"32005": {
|
| 68 |
+
"content": "<extra_id_94>",
|
| 69 |
+
"lstrip": true,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": true,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"32006": {
|
| 76 |
+
"content": "<extra_id_93>",
|
| 77 |
+
"lstrip": true,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": true,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"32007": {
|
| 84 |
+
"content": "<extra_id_92>",
|
| 85 |
+
"lstrip": true,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": true,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"32008": {
|
| 92 |
+
"content": "<extra_id_91>",
|
| 93 |
+
"lstrip": true,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": true,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"32009": {
|
| 100 |
+
"content": "<extra_id_90>",
|
| 101 |
+
"lstrip": true,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": true,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"32010": {
|
| 108 |
+
"content": "<extra_id_89>",
|
| 109 |
+
"lstrip": true,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": true,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"32011": {
|
| 116 |
+
"content": "<extra_id_88>",
|
| 117 |
+
"lstrip": true,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": true,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"32012": {
|
| 124 |
+
"content": "<extra_id_87>",
|
| 125 |
+
"lstrip": true,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": true,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"32013": {
|
| 132 |
+
"content": "<extra_id_86>",
|
| 133 |
+
"lstrip": true,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": true,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"32014": {
|
| 140 |
+
"content": "<extra_id_85>",
|
| 141 |
+
"lstrip": true,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": true,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"32015": {
|
| 148 |
+
"content": "<extra_id_84>",
|
| 149 |
+
"lstrip": true,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": true,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"32016": {
|
| 156 |
+
"content": "<extra_id_83>",
|
| 157 |
+
"lstrip": true,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": true,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"32017": {
|
| 164 |
+
"content": "<extra_id_82>",
|
| 165 |
+
"lstrip": true,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": true,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"32018": {
|
| 172 |
+
"content": "<extra_id_81>",
|
| 173 |
+
"lstrip": true,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": true,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"32019": {
|
| 180 |
+
"content": "<extra_id_80>",
|
| 181 |
+
"lstrip": true,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": true,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"32020": {
|
| 188 |
+
"content": "<extra_id_79>",
|
| 189 |
+
"lstrip": true,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": true,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"32021": {
|
| 196 |
+
"content": "<extra_id_78>",
|
| 197 |
+
"lstrip": true,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": true,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"32022": {
|
| 204 |
+
"content": "<extra_id_77>",
|
| 205 |
+
"lstrip": true,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": true,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"32023": {
|
| 212 |
+
"content": "<extra_id_76>",
|
| 213 |
+
"lstrip": true,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": true,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"32024": {
|
| 220 |
+
"content": "<extra_id_75>",
|
| 221 |
+
"lstrip": true,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": true,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"32025": {
|
| 228 |
+
"content": "<extra_id_74>",
|
| 229 |
+
"lstrip": true,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": true,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"32026": {
|
| 236 |
+
"content": "<extra_id_73>",
|
| 237 |
+
"lstrip": true,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": true,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"32027": {
|
| 244 |
+
"content": "<extra_id_72>",
|
| 245 |
+
"lstrip": true,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": true,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"32028": {
|
| 252 |
+
"content": "<extra_id_71>",
|
| 253 |
+
"lstrip": true,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": true,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"32029": {
|
| 260 |
+
"content": "<extra_id_70>",
|
| 261 |
+
"lstrip": true,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": true,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"32030": {
|
| 268 |
+
"content": "<extra_id_69>",
|
| 269 |
+
"lstrip": true,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": true,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"32031": {
|
| 276 |
+
"content": "<extra_id_68>",
|
| 277 |
+
"lstrip": true,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": true,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"32032": {
|
| 284 |
+
"content": "<extra_id_67>",
|
| 285 |
+
"lstrip": true,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": true,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"32033": {
|
| 292 |
+
"content": "<extra_id_66>",
|
| 293 |
+
"lstrip": true,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": true,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"32034": {
|
| 300 |
+
"content": "<extra_id_65>",
|
| 301 |
+
"lstrip": true,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": true,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"32035": {
|
| 308 |
+
"content": "<extra_id_64>",
|
| 309 |
+
"lstrip": true,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": true,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"32036": {
|
| 316 |
+
"content": "<extra_id_63>",
|
| 317 |
+
"lstrip": true,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": true,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"32037": {
|
| 324 |
+
"content": "<extra_id_62>",
|
| 325 |
+
"lstrip": true,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": true,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"32038": {
|
| 332 |
+
"content": "<extra_id_61>",
|
| 333 |
+
"lstrip": true,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": true,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"32039": {
|
| 340 |
+
"content": "<extra_id_60>",
|
| 341 |
+
"lstrip": true,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": true,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"32040": {
|
| 348 |
+
"content": "<extra_id_59>",
|
| 349 |
+
"lstrip": true,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": true,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"32041": {
|
| 356 |
+
"content": "<extra_id_58>",
|
| 357 |
+
"lstrip": true,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": true,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"32042": {
|
| 364 |
+
"content": "<extra_id_57>",
|
| 365 |
+
"lstrip": true,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": true,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"32043": {
|
| 372 |
+
"content": "<extra_id_56>",
|
| 373 |
+
"lstrip": true,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": true,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"32044": {
|
| 380 |
+
"content": "<extra_id_55>",
|
| 381 |
+
"lstrip": true,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": true,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"32045": {
|
| 388 |
+
"content": "<extra_id_54>",
|
| 389 |
+
"lstrip": true,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": true,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"32046": {
|
| 396 |
+
"content": "<extra_id_53>",
|
| 397 |
+
"lstrip": true,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": true,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"32047": {
|
| 404 |
+
"content": "<extra_id_52>",
|
| 405 |
+
"lstrip": true,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": true,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"32048": {
|
| 412 |
+
"content": "<extra_id_51>",
|
| 413 |
+
"lstrip": true,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": true,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"32049": {
|
| 420 |
+
"content": "<extra_id_50>",
|
| 421 |
+
"lstrip": true,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": true,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"32050": {
|
| 428 |
+
"content": "<extra_id_49>",
|
| 429 |
+
"lstrip": true,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": true,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"32051": {
|
| 436 |
+
"content": "<extra_id_48>",
|
| 437 |
+
"lstrip": true,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": true,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"32052": {
|
| 444 |
+
"content": "<extra_id_47>",
|
| 445 |
+
"lstrip": true,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": true,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"32053": {
|
| 452 |
+
"content": "<extra_id_46>",
|
| 453 |
+
"lstrip": true,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": true,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"32054": {
|
| 460 |
+
"content": "<extra_id_45>",
|
| 461 |
+
"lstrip": true,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": true,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"32055": {
|
| 468 |
+
"content": "<extra_id_44>",
|
| 469 |
+
"lstrip": true,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": true,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"32056": {
|
| 476 |
+
"content": "<extra_id_43>",
|
| 477 |
+
"lstrip": true,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": true,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"32057": {
|
| 484 |
+
"content": "<extra_id_42>",
|
| 485 |
+
"lstrip": true,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": true,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"32058": {
|
| 492 |
+
"content": "<extra_id_41>",
|
| 493 |
+
"lstrip": true,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": true,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"32059": {
|
| 500 |
+
"content": "<extra_id_40>",
|
| 501 |
+
"lstrip": true,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": true,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"32060": {
|
| 508 |
+
"content": "<extra_id_39>",
|
| 509 |
+
"lstrip": true,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": true,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"32061": {
|
| 516 |
+
"content": "<extra_id_38>",
|
| 517 |
+
"lstrip": true,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": true,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"32062": {
|
| 524 |
+
"content": "<extra_id_37>",
|
| 525 |
+
"lstrip": true,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": true,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"32063": {
|
| 532 |
+
"content": "<extra_id_36>",
|
| 533 |
+
"lstrip": true,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": true,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"32064": {
|
| 540 |
+
"content": "<extra_id_35>",
|
| 541 |
+
"lstrip": true,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": true,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"32065": {
|
| 548 |
+
"content": "<extra_id_34>",
|
| 549 |
+
"lstrip": true,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": true,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"32066": {
|
| 556 |
+
"content": "<extra_id_33>",
|
| 557 |
+
"lstrip": true,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": true,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"32067": {
|
| 564 |
+
"content": "<extra_id_32>",
|
| 565 |
+
"lstrip": true,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": true,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"32068": {
|
| 572 |
+
"content": "<extra_id_31>",
|
| 573 |
+
"lstrip": true,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": true,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"32069": {
|
| 580 |
+
"content": "<extra_id_30>",
|
| 581 |
+
"lstrip": true,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": true,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"32070": {
|
| 588 |
+
"content": "<extra_id_29>",
|
| 589 |
+
"lstrip": true,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": true,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"32071": {
|
| 596 |
+
"content": "<extra_id_28>",
|
| 597 |
+
"lstrip": true,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": true,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"32072": {
|
| 604 |
+
"content": "<extra_id_27>",
|
| 605 |
+
"lstrip": true,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": true,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"32073": {
|
| 612 |
+
"content": "<extra_id_26>",
|
| 613 |
+
"lstrip": true,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": true,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"32074": {
|
| 620 |
+
"content": "<extra_id_25>",
|
| 621 |
+
"lstrip": true,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": true,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"32075": {
|
| 628 |
+
"content": "<extra_id_24>",
|
| 629 |
+
"lstrip": true,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": true,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"32076": {
|
| 636 |
+
"content": "<extra_id_23>",
|
| 637 |
+
"lstrip": true,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": true,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"32077": {
|
| 644 |
+
"content": "<extra_id_22>",
|
| 645 |
+
"lstrip": true,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": true,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"32078": {
|
| 652 |
+
"content": "<extra_id_21>",
|
| 653 |
+
"lstrip": true,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": true,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"32079": {
|
| 660 |
+
"content": "<extra_id_20>",
|
| 661 |
+
"lstrip": true,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": true,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"32080": {
|
| 668 |
+
"content": "<extra_id_19>",
|
| 669 |
+
"lstrip": true,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": true,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"32081": {
|
| 676 |
+
"content": "<extra_id_18>",
|
| 677 |
+
"lstrip": true,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": true,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"32082": {
|
| 684 |
+
"content": "<extra_id_17>",
|
| 685 |
+
"lstrip": true,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": true,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"32083": {
|
| 692 |
+
"content": "<extra_id_16>",
|
| 693 |
+
"lstrip": true,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": true,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"32084": {
|
| 700 |
+
"content": "<extra_id_15>",
|
| 701 |
+
"lstrip": true,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": true,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"32085": {
|
| 708 |
+
"content": "<extra_id_14>",
|
| 709 |
+
"lstrip": true,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": true,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"32086": {
|
| 716 |
+
"content": "<extra_id_13>",
|
| 717 |
+
"lstrip": true,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": true,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"32087": {
|
| 724 |
+
"content": "<extra_id_12>",
|
| 725 |
+
"lstrip": true,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": true,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"32088": {
|
| 732 |
+
"content": "<extra_id_11>",
|
| 733 |
+
"lstrip": true,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": true,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"32089": {
|
| 740 |
+
"content": "<extra_id_10>",
|
| 741 |
+
"lstrip": true,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": true,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"32090": {
|
| 748 |
+
"content": "<extra_id_9>",
|
| 749 |
+
"lstrip": true,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": true,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"32091": {
|
| 756 |
+
"content": "<extra_id_8>",
|
| 757 |
+
"lstrip": true,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": true,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"32092": {
|
| 764 |
+
"content": "<extra_id_7>",
|
| 765 |
+
"lstrip": true,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": true,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"32093": {
|
| 772 |
+
"content": "<extra_id_6>",
|
| 773 |
+
"lstrip": true,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": true,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"32094": {
|
| 780 |
+
"content": "<extra_id_5>",
|
| 781 |
+
"lstrip": true,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": true,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"32095": {
|
| 788 |
+
"content": "<extra_id_4>",
|
| 789 |
+
"lstrip": true,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": true,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"32096": {
|
| 796 |
+
"content": "<extra_id_3>",
|
| 797 |
+
"lstrip": true,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": true,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"32097": {
|
| 804 |
+
"content": "<extra_id_2>",
|
| 805 |
+
"lstrip": true,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": true,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"32098": {
|
| 812 |
+
"content": "<extra_id_1>",
|
| 813 |
+
"lstrip": true,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": true,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"32099": {
|
| 820 |
+
"content": "<extra_id_0>",
|
| 821 |
+
"lstrip": true,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": true,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
}
|
| 827 |
+
},
|
| 828 |
+
"additional_special_tokens": [
|
| 829 |
+
"<extra_id_0>",
|
| 830 |
+
"<extra_id_1>",
|
| 831 |
+
"<extra_id_2>",
|
| 832 |
+
"<extra_id_3>",
|
| 833 |
+
"<extra_id_4>",
|
| 834 |
+
"<extra_id_5>",
|
| 835 |
+
"<extra_id_6>",
|
| 836 |
+
"<extra_id_7>",
|
| 837 |
+
"<extra_id_8>",
|
| 838 |
+
"<extra_id_9>",
|
| 839 |
+
"<extra_id_10>",
|
| 840 |
+
"<extra_id_11>",
|
| 841 |
+
"<extra_id_12>",
|
| 842 |
+
"<extra_id_13>",
|
| 843 |
+
"<extra_id_14>",
|
| 844 |
+
"<extra_id_15>",
|
| 845 |
+
"<extra_id_16>",
|
| 846 |
+
"<extra_id_17>",
|
| 847 |
+
"<extra_id_18>",
|
| 848 |
+
"<extra_id_19>",
|
| 849 |
+
"<extra_id_20>",
|
| 850 |
+
"<extra_id_21>",
|
| 851 |
+
"<extra_id_22>",
|
| 852 |
+
"<extra_id_23>",
|
| 853 |
+
"<extra_id_24>",
|
| 854 |
+
"<extra_id_25>",
|
| 855 |
+
"<extra_id_26>",
|
| 856 |
+
"<extra_id_27>",
|
| 857 |
+
"<extra_id_28>",
|
| 858 |
+
"<extra_id_29>",
|
| 859 |
+
"<extra_id_30>",
|
| 860 |
+
"<extra_id_31>",
|
| 861 |
+
"<extra_id_32>",
|
| 862 |
+
"<extra_id_33>",
|
| 863 |
+
"<extra_id_34>",
|
| 864 |
+
"<extra_id_35>",
|
| 865 |
+
"<extra_id_36>",
|
| 866 |
+
"<extra_id_37>",
|
| 867 |
+
"<extra_id_38>",
|
| 868 |
+
"<extra_id_39>",
|
| 869 |
+
"<extra_id_40>",
|
| 870 |
+
"<extra_id_41>",
|
| 871 |
+
"<extra_id_42>",
|
| 872 |
+
"<extra_id_43>",
|
| 873 |
+
"<extra_id_44>",
|
| 874 |
+
"<extra_id_45>",
|
| 875 |
+
"<extra_id_46>",
|
| 876 |
+
"<extra_id_47>",
|
| 877 |
+
"<extra_id_48>",
|
| 878 |
+
"<extra_id_49>",
|
| 879 |
+
"<extra_id_50>",
|
| 880 |
+
"<extra_id_51>",
|
| 881 |
+
"<extra_id_52>",
|
| 882 |
+
"<extra_id_53>",
|
| 883 |
+
"<extra_id_54>",
|
| 884 |
+
"<extra_id_55>",
|
| 885 |
+
"<extra_id_56>",
|
| 886 |
+
"<extra_id_57>",
|
| 887 |
+
"<extra_id_58>",
|
| 888 |
+
"<extra_id_59>",
|
| 889 |
+
"<extra_id_60>",
|
| 890 |
+
"<extra_id_61>",
|
| 891 |
+
"<extra_id_62>",
|
| 892 |
+
"<extra_id_63>",
|
| 893 |
+
"<extra_id_64>",
|
| 894 |
+
"<extra_id_65>",
|
| 895 |
+
"<extra_id_66>",
|
| 896 |
+
"<extra_id_67>",
|
| 897 |
+
"<extra_id_68>",
|
| 898 |
+
"<extra_id_69>",
|
| 899 |
+
"<extra_id_70>",
|
| 900 |
+
"<extra_id_71>",
|
| 901 |
+
"<extra_id_72>",
|
| 902 |
+
"<extra_id_73>",
|
| 903 |
+
"<extra_id_74>",
|
| 904 |
+
"<extra_id_75>",
|
| 905 |
+
"<extra_id_76>",
|
| 906 |
+
"<extra_id_77>",
|
| 907 |
+
"<extra_id_78>",
|
| 908 |
+
"<extra_id_79>",
|
| 909 |
+
"<extra_id_80>",
|
| 910 |
+
"<extra_id_81>",
|
| 911 |
+
"<extra_id_82>",
|
| 912 |
+
"<extra_id_83>",
|
| 913 |
+
"<extra_id_84>",
|
| 914 |
+
"<extra_id_85>",
|
| 915 |
+
"<extra_id_86>",
|
| 916 |
+
"<extra_id_87>",
|
| 917 |
+
"<extra_id_88>",
|
| 918 |
+
"<extra_id_89>",
|
| 919 |
+
"<extra_id_90>",
|
| 920 |
+
"<extra_id_91>",
|
| 921 |
+
"<extra_id_92>",
|
| 922 |
+
"<extra_id_93>",
|
| 923 |
+
"<extra_id_94>",
|
| 924 |
+
"<extra_id_95>",
|
| 925 |
+
"<extra_id_96>",
|
| 926 |
+
"<extra_id_97>",
|
| 927 |
+
"<extra_id_98>",
|
| 928 |
+
"<extra_id_99>"
|
| 929 |
+
],
|
| 930 |
+
"clean_up_tokenization_spaces": true,
|
| 931 |
+
"eos_token": "</s>",
|
| 932 |
+
"extra_ids": 100,
|
| 933 |
+
"legacy": false,
|
| 934 |
+
"model_max_length": 64,
|
| 935 |
+
"pad_token": "</s>",
|
| 936 |
+
"sp_model_kwargs": {},
|
| 937 |
+
"tokenizer_class": "T5Tokenizer",
|
| 938 |
+
"unk_token": "<unk>"
|
| 939 |
+
}
|